Delfs C D, Stranger R
Department of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
Inorg Chem. 2001 Jun 18;40(13):3061-76. doi: 10.1021/ic0008767.
Approximate density functional theory has been used to investigate changes in the geometry and electronic structure of the mixed oxo- and carboxylato-bridged dimers Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)and Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)in the Mn(IV)Mn(IV), Mn(III)Mn(IV), and Mn(III)Mn(III) oxidation states. The magnetic coupling in the dimer is profoundly affected by changes in both the bridging ligands and Mn oxidation state. In particular, change in the bridging structure has a dramatic effect on the nature of the Jahn-Teller distortion observed for the Mn(III) centers in the III/III and III/IV dimers. The principal magnetic interactions in Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)() involve the J(xz/xz)and J(yz/yz) pathways but due to the tilt of the Mn(2)O(2) core, they are less efficient than in the planar di-mu-oxo structure and, consequently, the calculated exchange coupling constants are generally smaller. In both the III/III and III/IV dimers, the Mn(III) centers are high-spin, and the Jahn-Teller effect gives rise to axially elongated Mn(III) geometries with the distortion axis along the Mn-O(c) bonds. In the III/IV dimer, the tilt of the Mn(2)O(2) core enhances the crossed exchange J(x)()()2(-)(y)()()2(/)(z)()()2 pathway relative to the planar di-mu-oxo counterpart, leading to significant delocalization of the odd electron. Since this delocalization pathway partially converts the Mn(IV) ion into low-spin Mn(III), the magnetic exchange in the ground state can be considered to arise from two interacting spin ladders, one is the result of coupling between Mn(IV) (S = 3/2) and high-spin Mn(III) (S = 2), the other is the result of coupling between Mn(IV) (S = 3/2) and low-spin Mn(III) (S = 1). In Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)(), both the III/III dimer and the lowest energy structure for the III/IV dimer involve high-spin Mn(III), but the Jahn-Teller axis is now orientated along the Mn-oxo bond, giving rise to axially compressed Mn(III) geometries with long Mn-O(c) equatorial bonds. In the IV/IV dimer, the ferromagnetic crossed exchange J(yz)()(/)(z)()()2 pathway partially cancels J(yz/yz) and, as a consequence, the antiferromagnetic J(xz/xz) pathway dominates the magnetic coupling. In the III/III dimer, the J(yz/yz) pathway is minimized due to the smaller Mn-O-Mn angle, and since the ferromagnetic J(yz)()(/)(z)()()2 pathway largely negates J(xz/xz), relatively weak overall antiferromagnetic coupling results. In the III/IV dimer, the structures involving high-spin and low-spin Mn(III) are almost degenerate. In the high-spin case, the odd electron is localized on the Mn(III) center, and the resulting antiferromagnetic coupling is similar to that found for the IV/IV dimer. In the alternative low-spin structure, the odd electron is significantly delocalized due to the crossed J(yz)()(/)(z)()()2 pathway, and cancellation between ferromagnetic and antiferromagnetic pathways leads to overall weak magnetic coupling. The delocalization partially converts the Mn(IV) ion into high-spin Mn(III), and consequently, the spin ladders arising from coupling of Mn(IV) (S = 3/2) with high-spin (S = 2) and low-spin (S = 1) Mn(III) are configurationally mixed. Thus, in principle, the ground-state magnetic coupling in the mixed-valence dimer will involve contributions from three spin-ladders, two associated with the delocalized low-spin structure and the third arising from the localized high-spin structure.
采用近似密度泛函理论研究了混合氧桥和羧基桥联二聚体Mn(2)(μ-O)(2)(O(2)CH)(NH(3))(6)和Mn(2)(μ-O)(O(2)CH)(2)(NH(3))(6)在Mn(IV)Mn(IV)、Mn(III)Mn(IV)和Mn(III)Mn(III)氧化态下的几何结构和电子结构变化。二聚体中的磁耦合受到桥联配体和Mn氧化态变化的深刻影响。特别是,桥联结构的变化对III/III和III/IV二聚体中Mn(III)中心观察到的 Jahn-Teller 畸变的性质有显著影响。Mn(2)(μ-O)(2)(O(2)CH)(NH(3))(6)中的主要磁相互作用涉及J(xz/xz)和J(yz/yz)途径,但由于Mn(2)O(2)核的倾斜,它们的效率低于平面双μ-氧结构,因此,计算得到的交换耦合常数通常较小。在III/III和III/IV二聚体中,Mn(III)中心都是高自旋的,Jahn-Teller效应导致沿Mn-O(c)键的畸变轴方向的轴向拉长的Mn(III)几何结构。在III/IV二聚体中,相对于平面双μ-氧对应物,Mn(2)O(2)核的倾斜增强了交叉交换J(x)()()2(-)(y)()()2(/)(z)()()2途径,导致奇数电子的显著离域。由于这种离域途径部分地将Mn(IV)离子转化为低自旋Mn(III),基态中的磁交换可以被认为是由两个相互作用的自旋梯产生的,一个是Mn(IV)(S = 3/2)和高自旋Mn(III)(S = 2)之间耦合的结果,另一个是Mn(IV)(S = 3/2)和低自旋Mn(III)(S = 1)之间耦合的结果。在Mn(2)(μ-O)(O(2)CH)(2)(NH(3))(6)中,III/III二聚体和III/IV二聚体的最低能量结构都涉及高自旋Mn(III),但Jahn-Teller轴现在沿着Mn-氧键方向,导致轴向压缩的Mn(III)几何结构,其Mn-O(c)赤道键较长。在IV/IV二聚体中,铁磁交叉交换J(yz)()(/)(z)()()2途径部分抵消了J(yz/yz),因此,反铁磁J(xz/xz)途径主导了磁耦合。在III/III二聚体中,由于较小的Mn-O-Mn角,J(yz/yz)途径最小化,并且由于铁磁J(yz)()(/)(z)()()2途径在很大程度上抵消了J(xz/xz),导致整体反铁磁耦合相对较弱。在III/IV二聚体中,涉及高自旋和低自旋Mn(III)的结构几乎简并。在高自旋情况下,奇数电子定域在Mn(III)中心,由此产生的反铁磁耦合与IV/IV二聚体中发现的相似。在另一种低自旋结构中,由于交叉J(yz)()(/)(z)()()2途径,奇数电子显著离域,铁磁和反铁磁途径之间的抵消导致整体弱磁耦合。这种离域部分地将Mn(IV)离子转化为高自旋Mn(III),因此,由Mn(IV)(S = 3/2)与高自旋(S = 2)和低自旋(S = 1)Mn(III)耦合产生的自旋梯在构型上混合。因此,原则上,混合价二聚体中的基态磁耦合将涉及三个自旋梯的贡献,两个与离域低自旋结构相关,第三个由局域高自旋结构产生。