Suppr超能文献

密度泛函近似对双(三联吡啶)锰(III)及相关化合物中计算出的 Jahn-Teller 畸变的影响。

Effect of density functional approximations on the calculated Jahn-Teller distortion in bis(terpyridine)manganese(III) and related compounds.

作者信息

Conradie Jeanet

机构信息

Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.

UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.

出版信息

J Mol Model. 2024 Jan 2;30(1):20. doi: 10.1007/s00894-023-05812-0.

Abstract

CONTEXT

Bis(terpyridine)manganese(III) exhibits Jahn-Teller distortion due to the inequivalent occupation of the degenerate e orbitals of this high-spin d pseudo octahedral complex. Due to the spatially constrained nature of the terpyridine ligand, the central Mn-N bonds will always be shorter than the Mn-N terminal bonds, making it more difficult to distinguish between compression and elongation Jahn-Teller structures for bis(terpyridine)manganese(III). Density functional theory (DFT) calculations were utilized as a tool to evaluate the type of Jahn-Teller distortion in the high-spin d bis(terpyridine)manganese(III). The nature of the Jahn-Teller distortion calculated does depend upon the choice of density functional approximation (DFA) with the B3LYP, M06, and OLYP-D3 DFAs giving compression and the PW6B95D3, MN15, and MN15-D3 DFAs giving elongation in gas-phase calculations. All solvent-phase calculations yield an elongated structure for the bis(terpyridine)manganese(III) compound, which is yet to be structurally characterized experimentally. However, both gas and solvent OLYP-D3 calculations result in a compressed structure for the only experimentally isolated and characterized bis(terpyridine)manganese(III) complex, specifically the complex with terpyridine = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine. This alignment with the experimentally observed compression Jahn-Teller structure enhances the credibility of OLYP-D3 calculations in reproducing the observed geometries. The compressed Jahn-Teller geometries were near D symmetry with the z-axis for compression defined along the Mn-N central bonds. Elongation Jahn-Teller distortion is not possible along the Mn-N central bonds, due to their spatially constrained nature. Thus, elongation occur along one pair of opposite Mn-N terminal bonds that are longer than the other pair of opposite terminal bonds, with shorter central bonds. The highest symmetry of the elongation Jahn-Teller distortion geometry of bis(terpyridine)manganese(III) is C. Criteria to distinguish between a compression and elongation Jahn-Teller geometry for bis(terpyridine)manganese(III) are identified. The nature of the singly occupied e molecular orbital, exhibiting anti-bonding interaction with the nitrogen-p MOs involved, dictates the type of Jahn-Teller distortion that occurs. The low-energy occupied bonding t molecular orbitals establish bonds with and undergo mixing with the ligand molecular orbitals. The OLYP-D3 functional is recommended for calculating bis(terpyridine)manganese(III) and related compounds due to its consistent generation of metal-ligand bonds slightly longer than observed in experiments, in line with the required behavior. Additionally, OLYP-D3 offers a realistic electronic structure for Jahn-Teller distorted bis(terpyridine)manganese(III), correctly identifying alpha e molecular orbitals as the highest occupied molecular orbital and lowest unoccupied molecular orbital in agreement with experimental electrochemical studies. Furthermore, OLYP-D3 accurately reproduces the experimental compression geometry for the only structurally known bis(terpyridine)manganese(III) compound, instilling confidence in its reliability for such calculations.

METHODS

DFT geometry optimization and frequency calculations were done on the two different modes of Jahn-Teller distortion of bis(terpyridine)manganese(III), using the OLYP, B3LYP, M06, PW6B95D3, and MN15 functionals, with and without the Grimme's D3 dispersion correction, and the 6-311G(d,p) or def2TZVPP basis set, as implemented in Gaussian 16. All optimizations were in the gas phase and also in the solvent phase with CHCN as implicit solvent using IEFPCM. DFT calculations were utilized to determine the Jahn-Teller effect on the geometry of high-spin d bis(terpyridine)manganese(III) complex containing two structurally constrained tridentate ligands.

摘要

背景

双(三联吡啶)锰(III)由于这种高自旋d伪八面体配合物的简并e轨道占据不等价而表现出 Jahn-Teller 畸变。由于三联吡啶配体的空间受限性质,中心 Mn-N 键总是比 Mn-N 端键短,这使得区分双(三联吡啶)锰(III)的压缩和伸长 Jahn-Teller 结构更加困难。密度泛函理论(DFT)计算被用作评估高自旋d双(三联吡啶)锰(III)中 Jahn-Teller 畸变类型的工具。计算得到的 Jahn-Teller 畸变的性质确实取决于密度泛函近似(DFA)的选择,在气相计算中,B3LYP、M06 和 OLYP-D3 DFA 给出压缩,而 PW6B95D3、MN15 和 MN15-D3 DFA 给出伸长。所有溶剂相计算都得出双(三联吡啶)锰(III)化合物的伸长结构,该结构尚未通过实验进行结构表征。然而,气相和溶剂相的 OLYP-D3 计算都得出了唯一通过实验分离和表征的双(三联吡啶)锰(III)配合物的压缩结构,具体来说是与三联吡啶 = 4'-(4-甲基苯基)-2,2':6',2''-三联吡啶形成的配合物。这种与实验观察到的压缩 Jahn-Teller 结构的一致性提高了 OLYP-D3 计算在再现观察到的几何结构方面的可信度。压缩的 Jahn-Teller 几何结构接近 D 对称性,压缩的 z 轴沿着 Mn-N 中心键定义。由于 Mn-N 中心键的空间受限性质,沿着 Mn-N 中心键不可能发生伸长 Jahn-Teller 畸变。因此,伸长沿着一对比另一对相对端键长的相对 Mn-N 端键发生,中心键较短。双(三联吡啶)锰(III)的伸长 Jahn-Teller 畸变几何结构的最高对称性是 C。确定了区分双(三联吡啶)锰(III)的压缩和伸长 Jahn-Teller 几何结构的标准。单占据 e 分子轨道的性质与所涉及的氮-p MO 表现出反键相互作用,决定了发生的 Jahn-Teller 畸变的类型。低能量占据的成键 t 分子轨道与配体分子轨道形成键并发生混合。由于 OLYP-D3 泛函能够一致地生成比实验中观察到的略长的金属-配体键,符合所需行为,因此推荐用于计算双(三联吡啶)锰(III)及相关化合物。此外,OLYP-D3 为 Jahn-Teller 畸变的双(三联吡啶)锰(III)提供了现实的电子结构,与实验电化学研究一致,正确地将α e 分子轨道识别为最高占据分子轨道和最低未占据分子轨道。此外,OLYP-D3 准确地再现了唯一结构已知的双(三联吡啶)锰(III)化合物的实验压缩几何结构,增强了其在此类计算中的可靠性。

方法

使用 OLYP、B3LYP、M06、PW6B95D3 和 MN15 泛函,在有和没有 Grimme 的 D3 色散校正的情况下,以及 6-311G(d,p) 或 def2TZVPP 基组,对双(三联吡啶)锰(III)的两种不同 Jahn-Teller 畸变模式进行 DFT 几何优化和频率计算,如 Gaussian 16 中所实现。所有优化均在气相中进行,也在以 CHCN 为隐式溶剂的溶剂相中使用 IEFPCM 进行。DFT 计算用于确定 Jahn-Teller 效应在含有两个结构受限三齿配体的高自旋d双(三联吡啶)锰(III)配合物几何结构上的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afce/10761540/1ea76d749d3b/894_2023_5812_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验