Jo D H, Chiou Y M, Que L
Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.
Inorg Chem. 2001 Jun 18;40(13):3181-90. doi: 10.1021/ic001185d.
Crystallographic and spectroscopic studies of extradiol cleaving catechol dioxygenases indicate that the enzyme-substrate complexes have both an iron(II) center and a monoanionic catecholate. Herein we report a series of iron(II)-monoanionic catecholate complexes, (L)Fe(II)(catH) (1a, L = 6-Me(3)-TPA (tris(6-methyl-2-pyridylmethyl)amine), catH = CatH (1,2-catecholate monoanion); 1b, L = 6-Me(3)-TPA, catH = DBCH (3,5-di-tert-butyl-1,2-catecholate monoanion); 1c, L = 6-Me(2)-bpmcn (N,N'-dimethyl-N,N'-bis(6-methyl-2-pyridylmethyl)-trans-1,2-diaminocyclohexane), catH = CatH; 1d, L = 6-Me(2)-bpmcn, catH = DBCH), that model such enzyme complexes. The crystal structure of (6-Me(2)-bpmcn)Fe(II)(DBCH) (1d) shows that the DBCH ligand binds to the iron asymmetrically as previously reported for 1b, with two distinct Fe-O bonds of 1.943(1) and 2.344(1) A. Complexes 1 react with O(2) or NO to afford blue-purple iron(III)-catecholate dianion complexes, (L)Fe(III)(cat) (2). Interestingly, crystallographically characterized 2d, isolated from either reaction, has the N-methyl groups in a syn configuration, in contrast to the anti configuration of the precursor complex, so epimerization of the bound ligand must occur in the course of isolating 2d. This notion is supported by the fact that the UV-vis and EPR properties of in situ generated 2d(anti) differ from those of isolated 2d(syn). While the conversion of 1 to 2 in the presence of O(2) occurs without an obvious intermediate, that in the presence of NO proceeds via a metastable S = (3)/(2) (L)Fe(catH)(NO) adduct 3, which can only be observed spectroscopically but not isolated. Intermediates 3a and 3b subsequently disproportionate to afford two distinct complexes, (6-Me(3)-TPA)Fe(III)(cat) (2a and 2b) and (6-Me(3)-TPA)Fe(NO)(2) (4) in comparable yield, while 3d converts to 2d in 90% yield. Complexes 2b and anti-2d react further with O(2) over a 24 h period and afford a high yield of cleavage products. Product analysis shows that the products mainly derive from intradiol cleavage but with a small extent of extradiol cleavage (89:3% for 2b and 78:12% for anti-2d). The small amounts of the extradiol cleavage products observed may be due to the dissociation of an alpha-methyl substituted pyridyl arm, generating a complex with a tridentate ligand. Surprisingly, syn-2d does not react with O(2) over the course of 4 days. These results suggest that there are a number of factors that influence the mode and rate of cleavage of catechols coordinated to iron centers.
间位二醇裂解儿茶酚双加氧酶的晶体学和光谱学研究表明,酶 - 底物复合物既有一个铁(II)中心又有一个单阴离子儿茶酚盐。在此,我们报告了一系列铁(II) - 单阴离子儿茶酚盐配合物,(L)Fe(II)(catH) (1a,L = 6 - Me(3)-TPA(三(6 - 甲基 - 2 - 吡啶甲基)胺),catH = CatH(1,2 - 儿茶酚单阴离子);1b,L = 6 - Me(3)-TPA,catH = DBCH(3,5 - 二叔丁基 - 1,2 - 儿茶酚单阴离子);1c,L = 6 - Me(2)-bpmcn(N,N'-二甲基 - N,N'-双(6 - 甲基 - 2 - 吡啶甲基) - 反式 - 1,2 - 二氨基环己烷),catH = CatH;1d,L = 6 - Me(2)-bpmcn,catH = DBCH),这些配合物可模拟此类酶复合物。(6 - Me(2)-bpmcn)Fe(II)(DBCH) (1d)的晶体结构表明,DBCH配体与铁不对称结合,正如之前报道的1b那样,有两个不同的Fe - O键,键长分别为1.943(1) 和2.344(1) Å。配合物1与O₂ 或NO反应生成蓝紫色的铁(III) - 儿茶酚二阴离子配合物,(L)Fe(III)(cat) (2)。有趣的是,从任一反应中分离得到的经晶体学表征的2d,其N - 甲基基团呈顺式构型,这与前体配合物的反式构型相反,所以在分离2d的过程中,结合配体必定发生了差向异构化。原位生成的2d(anti) 的紫外 - 可见光谱和电子顺磁共振性质与分离得到的2d(syn) 不同,这一事实支持了这一观点。虽然在O₂ 存在下1向2的转化没有明显的中间体,但在NO存在下则通过一个亚稳的S = (3)/(2) (L)Fe(catH)(NO) 加合物3进行,该加合物只能通过光谱观察到而无法分离。中间体3a和3b随后发生歧化反应,以相当的产率生成两种不同的配合物,(6 - Me(3)-TPA)Fe(III)(cat) (2a和2b)和(6 - Me(3)-TPA)Fe(NO)₂ (4),而3d以90% 的产率转化为2d。配合物2b和反式 - 2d在24小时内进一步与O₂ 反应,并产生高产率的裂解产物。产物分析表明,产物主要源于间位二醇裂解,但有少量的邻位二醇裂解(2b为89:3%,反式 - 2d为78:12%)。观察到的少量邻位二醇裂解产物可能是由于α - 甲基取代的吡啶臂解离,生成了一种具有三齿配体的配合物。令人惊讶的是,顺式 - 2d在4天内不与O₂ 反应。这些结果表明,有许多因素会影响与铁中心配位的儿茶酚的裂解方式和速率。