Vetting Matthew W, Wackett Lawrence P, Que Lawrence, Lipscomb John D, Ohlendorf Douglas H
Department of Biochemistry, Molecular Biology and Biophysics, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
J Bacteriol. 2004 Apr;186(7):1945-58. doi: 10.1128/JB.186.7.1945-1958.2004.
The X-ray crystal structures of homoprotocatechuate 2,3-dioxygenases isolated from Arthrobacter globiformis and Brevibacterium fuscum have been determined to high resolution. These enzymes exhibit 83% sequence identity, yet their activities depend on different transition metals, Mn2+ and Fe2+, respectively. The structures allow the origins of metal ion selectivity and aspects of the molecular mechanism to be examined in detail. The homotetrameric enzymes belong to the type I family of extradiol dioxygenases (vicinal oxygen chelate superfamily); each monomer has four betaalphabetabetabeta modules forming two structurally homologous N-terminal and C-terminal barrel-shaped domains. The active-site metal is located in the C-terminal barrel and is ligated by two equatorial ligands, H214NE1 and E267OE1; one axial ligand, H155NE1; and two to three water molecules. The first and second coordination spheres of these enzymes are virtually identical (root mean square difference over all atoms, 0.19 A), suggesting that the metal selectivity must be due to changes at a significant distance from the metal and/or changes that occur during folding. The substrate (2,3-dihydroxyphenylacetate [HPCA]) chelates the metal asymmetrically at sites trans to the two imidazole ligands and interacts with a unique, mobile C-terminal loop. The loop closes over the bound substrate, presumably to seal the active site as the oxygen activation process commences. An "open" coordination site trans to E267 is the likely binding site for O2. The geometry of the enzyme-substrate complexes suggests that if a transiently formed metal-superoxide complex attacks the substrate without dissociation from the metal, it must do so at the C-3 position. Second-sphere active-site residues that are positioned to interact with the HPCA and/or bound O2 during catalysis are identified and discussed in the context of current mechanistic hypotheses.
已测定从球形节杆菌和暗褐短杆菌中分离出的高香草酸2,3-双加氧酶的X射线晶体结构,分辨率很高。这些酶的序列同一性为83%,但其活性分别依赖于不同的过渡金属Mn2+和Fe2+。这些结构使得能够详细研究金属离子选择性的起源和分子机制的各个方面。这些同四聚体酶属于II型二醇双加氧酶(邻位氧螯合超家族);每个单体有四个β-α-α-β模块,形成两个结构同源的N端和C端桶状结构域。活性位点金属位于C端桶状结构域中,由两个赤道配体H214NE1和E267OE1、一个轴向配体H155NE1以及两到三个水分子配位。这些酶的第一和第二配位球几乎相同(所有原子的均方根差为0.19 Å),这表明金属选择性必定是由于距金属有相当距离处的变化和/或折叠过程中发生的变化所致。底物(2,3-二羟基苯乙酸[HPCA])在与两个咪唑配体反位的位点不对称地螯合金属,并与一个独特的可移动C端环相互作用。该环在结合的底物上方闭合,推测是在氧激活过程开始时封闭活性位点。与E267反位的一个“开放”配位点可能是O2的结合位点。酶-底物复合物的几何结构表明,如果一个瞬时形成的金属-超氧化物复合物在不离解金属的情况下攻击底物,那么它必定在C-3位置这样做。在当前的机制假说背景下,确定并讨论了在催化过程中定位为与HPCA和/或结合的O2相互作用的第二配位球活性位点残基。