Suppr超能文献

嗜热古菌嗜气栖热袍菌中尿嘧啶加工活性的生化特性

Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum.

作者信息

Sartori A A, Schär P, Fitz-Gibbon S, Miller J H, Jiricny J

机构信息

Institute of Medical Radiobiology, University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland.

出版信息

J Biol Chem. 2001 Aug 10;276(32):29979-86. doi: 10.1074/jbc.M102985200. Epub 2001 Jun 8.

Abstract

Deamination of cytosine to uracil and 5-methylcytosine to thymine represents a major mutagenic threat particularly at high temperatures. In double-stranded DNA, these spontaneous hydrolytic reactions give rise to G.U and G.T mispairs, respectively, that must be restored to G.C pairs prior to the next round of DNA replication; if left unrepaired, 50% of progeny DNA would acquire G.C --> A.T transition mutations. The genome of the hyperthermophilic archaeon Pyrobaculum aerophilum has been recently shown to encode a protein, Pa-MIG, a member of the endonuclease III family, capable of processing both G.U and G.T mispairs. We now show that this latter activity is undetectable in crude extracts of P. aerophilum. However, uracil residues in G.U mispairs, in A.U pairs, and in single-stranded DNA were efficiently removed in these extracts. These activities were assigned to a approximately 22-kDa polypeptide named Pa-UDG (P. aerophilum uracil-DNA glycosylase). The recombinant Pa-UDG protein is highly thermostable and displays a considerable degree of homology to the recently described uracil-DNA glycosylases from Archaeoglobus fulgidus and Thermotoga maritima. Interestingly, neither Pa-MIG nor Pa-UDG was inhibited by UGI, a generic inhibitor of the UNG family of uracil glycosylases. Yet a small fraction of the total uracil processing activity present in crude extracts of P. aerophilum was inhibited by this peptide. This implies that the hyperthermophilic archaeon possesses at least a three-pronged defense against the mutagenic threat of hydrolytic deamination of cytosines in its genomic DNA.

摘要

胞嘧啶脱氨生成尿嘧啶以及5-甲基胞嘧啶脱氨生成胸腺嘧啶是一种主要的诱变威胁,在高温下尤其如此。在双链DNA中,这些自发的水解反应分别产生G·U和G·T错配,在下一轮DNA复制之前必须将其恢复为G·C配对;如果不进行修复,50%的子代DNA将发生G·C→A·T转换突变。嗜热古菌嗜气栖热袍菌的基因组最近被证明编码一种蛋白质Pa-MIG,它是核酸内切酶III家族的成员,能够处理G·U和G·T错配。我们现在表明,在嗜气栖热袍菌的粗提物中检测不到这种后者的活性。然而,这些提取物中能有效去除G·U错配、A·U配对和单链DNA中的尿嘧啶残基。这些活性被归因于一种名为Pa-UDG(嗜气栖热袍菌尿嘧啶-DNA糖基化酶)的约22 kDa多肽。重组Pa-UDG蛋白具有很高的热稳定性,并且与最近描述的来自嗜热栖热菌和海栖热袍菌的尿嘧啶-DNA糖基化酶有相当程度的同源性。有趣的是,Pa-MIG和Pa-UDG都不受UNG家族尿嘧啶糖基化酶的通用抑制剂UGI的抑制。然而,嗜气栖热袍菌粗提物中总尿嘧啶处理活性的一小部分被这种肽抑制。这意味着嗜热古菌在其基因组DNA中对胞嘧啶水解脱氨的诱变威胁至少拥有三重防御。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验