Suppr超能文献

通过微妙的几何变化戏剧性地电子干扰 Cu 中心。

Dramatic Electronic Perturbations of Cu Centers via Subtle Geometric Changes.

机构信息

Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario and CONICET , 2000 Rosario , Argentina.

Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.

出版信息

J Am Chem Soc. 2019 Jan 23;141(3):1373-1381. doi: 10.1021/jacs.8b12335. Epub 2019 Jan 8.

Abstract

Cu is a binuclear copper site acting as electron entry port in terminal heme-copper oxidases. In the oxidized form, Cu is a mixed valence pair whose electronic structure can be described using a potential energy surface with two minima, σ* and π, that are variably populated at room temperature. We report that mutations in the first and second coordination spheres of the binuclear metallocofactor can be combined in an additive manner to tune the energy gap and, thus, the relative populations of the two lowest-lying states. A series of designed mutants span σ*/π energy gaps ranging from 900 to 13 cm. The smallest gap corresponds to a variant with an effectively degenerate ground state. All engineered sites preserve the mixed-valence character of this metal center and the electron transfer functionality. An increase of the Cu-Cu distance less than 0.06 Å modifies the σ*/π energy gap by almost 2 orders of magnitude, with longer distances eliciting a larger population of the π state. This scenario offers a stark contrast to synthetic systems, as model compounds require a lengthening of 0.5 Å in the Cu-Cu distance to stabilize the π state. These findings show that the tight control of the protein environment allows drastic perturbations in the electronic structure of Cu sites with minor geometric changes.

摘要

铜是双核铜位点,作为末端血红素-铜氧化酶中的电子入口。在氧化形式下,铜是一个混合价对,其电子结构可以用一个具有两个势能最低点的势能面来描述,σ* 和 π,在室温下它们的电子分布是可变量。我们报告说,在双核金属辅因子的第一和第二配位球中的突变可以以加和的方式组合,以调节能隙,从而调节两个最低能态的相对分布。一系列设计的突变体跨越 σ*/π 能隙范围从 900 到 13 cm。最小的能隙对应于一个有效简并基态的变体。所有工程化的位点都保留了这个金属中心的混合价特征和电子转移功能。铜-铜距离的减小小于 0.06 Å,可以将 σ*/π 能隙改变近 2 个数量级,距离越长,π 态的分布越大。这种情况与合成系统形成鲜明对比,因为模型化合物需要铜-铜距离延长 0.5 Å 才能稳定 π 态。这些发现表明,蛋白质环境的严格控制允许在铜位点的电子结构中进行剧烈的扰动,而几何变化很小。

相似文献

引用本文的文献

5
A Binuclear Cu Center Designed in an All α-Helical Protein Scaffold.一种设计在全α-螺旋蛋白质支架中的双核铜中心。
J Am Chem Soc. 2020 Aug 12;142(32):13779-13794. doi: 10.1021/jacs.0c04226. Epub 2020 Jul 29.
6
Biological and Bioinspired Inorganic N-N Bond-Forming Reactions.生物和仿生无机 N-N 键形成反应。
Chem Rev. 2020 Jun 24;120(12):5252-5307. doi: 10.1021/acs.chemrev.9b00629. Epub 2020 Feb 28.

本文引用的文献

8
Alternative ground states enable pathway switching in biological electron transfer.替代基态使生物电子转移中的途径转换成为可能。
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17348-53. doi: 10.1073/pnas.1204251109. Epub 2012 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验