Blaisdell J O, Wallace S S
Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, Burlington, VT 05405-0068, USA.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7426-30. doi: 10.1073/pnas.131077798. Epub 2001 Jun 12.
It has been postulated that ionizing radiation produces a unique form of cellular DNA damage called "clustered damages" or "multiply damaged sites". Here, we show that clustered DNA damages are indeed formed in Escherichia coli by ionizing radiation and are converted to lethal double-strand breaks during attempted base-excision repair. In wild-type cells possessing the oxidative DNA glycosylases that cleave DNA at repairable single damages, double-strand breaks are formed at radiation-induced clusters during postirradiation incubation and also in a dose-dependent fashion. E. coli mutants lacking these enzymes do not form double-strand breaks postirradiation and are substantially more radioresistant than wild-type cells. Furthermore, overproduction of one of the oxidative DNA glycosylases in mutant cells confers a radiosensitive phenotype and an increase in the number of double-strand breaks. Thus, the effect of the oxidative DNA glycosylases in potentiating DNA damage must be considered when estimating radiation risk.
据推测,电离辐射会产生一种独特的细胞DNA损伤形式,称为“簇状损伤”或“多重损伤位点”。在此,我们表明,电离辐射确实会在大肠杆菌中形成簇状DNA损伤,并且在尝试进行碱基切除修复的过程中会转化为致死性双链断裂。在具有可修复单个损伤时能切割DNA的氧化DNA糖基化酶的野生型细胞中,双链断裂在辐射后孵育期间于辐射诱导的簇处形成,并且也是呈剂量依赖性的。缺乏这些酶的大肠杆菌突变体在辐射后不会形成双链断裂,并且比野生型细胞对辐射的抗性要强得多。此外,突变细胞中一种氧化DNA糖基化酶的过量表达赋予了放射敏感表型,并增加了双链断裂的数量。因此,在估计辐射风险时,必须考虑氧化DNA糖基化酶在增强DNA损伤方面的作用。