Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.
Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas, USA.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0171622. doi: 10.1128/aem.01716-22. Epub 2023 Feb 27.
Currently, there is a lack of bacterial biomarkers indicative of exposure to ionizing radiation (IR). IR biomarkers have applications for medical treatment planning, population exposure surveillance, and IR sensitivity studies. In this study, we compared the utility of signals originating from prophages and the SOS regulon as biomarkers of IR exposure in the radiosensitive bacterium Shewanella oneidensis. Using RNA sequencing, we demonstrated that 60 min after exposure to acute doses of IR (40, 1, 0.5, and 0.25 Gy), the transcriptional activation of the SOS regulon and the lytic cycle of the T-even lysogenic prophage So Lambda are comparable. Using quantitative PCR (qPCR), we showed that 300 min after exposure to doses as low as 0.25 Gy, the fold change of transcriptional activation of the So Lambda lytic cycle surpassed that of the SOS regulon. We observed an increase in cell size (a phenotype of SOS activation) and plaque production (a phenotype of prophage maturation) 300 min after doses as low as 1 Gy. While the transcriptional responses of the SOS and So Lambda regulons have been examined in S. oneidensis after lethal IR exposures, the potential of these (and other transcriptome-wide) responses as biomarkers of sublethal levels of IR (<10 Gy) and the longer-term activity of these two regulons have not been investigated. A major finding is that after exposure to sublethal doses of IR, the most upregulated transcripts are associated with a prophage regulon and not with a DNA damage response. Our findings suggest that prophage lytic cycle genes are a promising source of biomarkers of sublethal DNA damage. The bacterial minimum threshold of sensitivity to ionizing radiation (IR) is poorly understood, which hinders our understanding of how living systems recover from the doses of IR experienced in medical, industrial, and off-world environments. Using a transcriptome-wide approach, we studied how in the highly radiosensitive bacterium S. oneidensis, genes (including the SOS regulon and the So Lambda prophage) are activated after exposure to low doses of IR. We found that 300 min after exposure to doses as low as 0.25 Gy, genes within the So Lambda regulon remained upregulated. As this is the first transcriptome-wide study of how bacteria respond to acute sublethal doses of IR, these findings serve as a benchmark for future bacterial IR sensitivity studies. This is the first work to highlight the utility of prophages as biomarkers of exposure to very low (i.e., sublethal) doses of IR and to examine the longer-term impacts of sublethal IR exposure on bacteria.
目前,缺乏指示电离辐射(IR)暴露的细菌生物标志物。IR 生物标志物在医疗治疗计划、人群暴露监测和 IR 敏感性研究中有应用。在这项研究中,我们比较了源自噬菌体前噬菌体和 SOS 调控子的信号作为对易感性细菌希瓦氏菌(Shewanella oneidensis)IR 暴露的生物标志物的效用。通过 RNA 测序,我们证明暴露于急性剂量的 IR(40、1、0.5 和 0.25Gy)后 60 分钟,SOS 调控子的转录激活和 T-even 溶原性噬菌体 So Lambda 的裂解周期是可比的。通过定量 PCR(qPCR),我们表明,暴露于低至 0.25Gy 的剂量后 300 分钟,So Lambda 裂解周期的转录激活倍数变化超过了 SOS 调控子。在 1Gy 低剂量后 300 分钟观察到细胞大小增加(SOS 激活的表型)和菌斑形成(噬菌体成熟的表型)。虽然在 S. oneidensis 中已经研究了致死性 IR 暴露后 SOS 和 So Lambda 调控子的转录反应,但这些(和其他全转录组)反应作为亚致死水平的 IR(<10Gy)和这两个调控子的长期活性的生物标志物的潜力尚未被研究。一个主要发现是,暴露于亚致死剂量的 IR 后,上调最多的转录本与噬菌体裂解周期基因相关,而与 DNA 损伤反应无关。我们的研究结果表明,噬菌体裂解周期基因是亚致死 DNA 损伤生物标志物的有希望的来源。电离辐射(IR)对细菌的最小敏感阈值知之甚少,这阻碍了我们对生命系统如何从医学、工业和外星环境中经历的剂量中恢复的理解。使用全转录组方法,我们研究了在高度易感性细菌 S. oneidensis 中,基因(包括 SOS 调控子和 So Lambda 噬菌体)在暴露于低剂量 IR 后如何被激活。我们发现,暴露于低至 0.25Gy 的剂量后 300 分钟,So Lambda 调控子内的基因仍保持上调。由于这是第一个研究细菌如何对急性亚致死剂量的 IR 做出反应的全转录组研究,这些发现为未来的细菌 IR 敏感性研究提供了基准。这是第一项工作,强调了噬菌体作为暴露于极低(即亚致死)剂量的 IR 的生物标志物的效用,并研究了亚致死 IR 暴露对细菌的长期影响。
Annu Rev Microbiol. 2021-10-8
ACS Synth Biol. 2020-9-18
Mol Cell Proteomics. 2020-8
Int J Radiat Biol. 2020-1-8
Environ Mol Mutagen. 2019-5
Exp Biol Med (Maywood). 2018-2
Genome Integr. 2017-1-23