Suppr超能文献

哈密顿波动系统中孤立波列的稳定性

Stability of solitary wave trains in Hamiltonian wave systems.

作者信息

Arnold J M

机构信息

Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, United Kingdom.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):979-86. doi: 10.1103/physreve.60.979.

Abstract

A class of Hamiltonian nonlinear wave equations possessing complex solitary waves with exponential decay is studied. It is shown that the interpulse interactions in a train of nearly identical solitary waves with large separations between the individual solitary waves are approximately described by a double Toda lattice system, with two variables at each lattice site. Under certain conditions, which are explicitly identified as Cauchy-Riemann equations, the two dynamical variables are real and imaginary parts of a single complex variable, leading to the complex Toda lattice equations, which is a discrete integrable dynamical system. This analysis generalizes to certain nonintegrable partial differential equations a recent result for the nonlinear Schrödinger equation, and is important for the study of nonlinear communications channels in optical fibers. An example, the cubic-quintic nonlinear Schrödinger equation, is worked out in detail to show that the theory can be carried through analytically. The theory is used to determine the stability of an infinite chain of nearly identical pulses separated by large time intervals. The entire theory is nonperturbative in the sense that the nonlinear wave equation need not be a weak perturbation of an integrable one.

摘要

研究了一类具有指数衰减复孤立波的哈密顿非线性波动方程。结果表明,在一列几乎相同的孤立波中,单个孤立波之间间距较大时,脉冲间相互作用可由双托达晶格系统近似描述,每个晶格点有两个变量。在某些明确为柯西 - 黎曼方程的条件下,这两个动力学变量是单个复变量的实部和虚部,从而导出复托达晶格方程,它是一个离散可积动力系统。该分析将非线性薛定谔方程的一个近期结果推广到了某些不可积偏微分方程,对光纤中非线性通信信道的研究具有重要意义。给出了一个例子,即立方 - 五次非线性薛定谔方程,详细阐述以表明该理论可通过解析方法进行。该理论用于确定由大时间间隔分隔的几乎相同脉冲的无限链的稳定性。整个理论是非微扰的,即非线性波动方程不必是可积方程的弱扰动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验