Gibson D T
Department of Microbiology and Center for Biocatalysis and Bioprocessing, College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
J Ind Microbiol Biotechnol. 1999 Oct;23(4-5):284-293. doi: 10.1038/sj.jim.2900715.
Beijerinckia sp strain B1 grows with biphenyl as its sole source of carbon and energy. A mutant, strain B8/36, oxidized biphenyl to cis-(2S,3R)-dihydroxy-l-phenylcyclohexa-4,6-diene (cis-biphenyl dihydrodiol). Strain B8/36 oxidized anthracene, phenanthrene, benz[a]anthracene and benzo[a]pyrene to cis-dihydrodiols. Other substrates oxidized to cis-dihydrodiols were dibenzofuran, dibenzothiophene and dibenzo-p-dioxin. Biphenyl dioxygenase activity was observed in cells of Beijerinckia B1 and B8/36 after growth in the presence of biphenyl, m-, p-xylene and salicylate. Recent studies have led to the reclassification of Beijerinckia B1 as Sphingomonas yanoikuyae strain B1. Subsequent biotransformation studies showed that S. yanoikuyae B8/36 oxidized chrysene to a bis-cis-diol with hydroxyl substituents at the 3,4- and 9,10-positions. Dihydronaphthalene was oxidized to cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, naphthalene, cis-1,2-dihydroxy-1,2-dihydronaphthalene and 2-hydroxy-1,2-dihydronaphthalene. Anisole and phenetole were oxidized to phenol. Thus the S. yanoikuyae biphenyl dioxygenase catalyzes cis-dihydroxylation, benzylic monohydroxylation, desaturation and dealkylation reactions. To date, the genes encoding biphenyl dioxygenase have not been cloned. However, the nucleotide sequence of a S. yanoikuyaeB1 DNA fragment contains five different alpha subunits as determined by conserved amino acids coordinating iron in a Rieske [2Fe-2S] center and mononuclear iron at the catalytic site. The specific role of the different putative oxygenases in biotransformation reactions catalyzed by S. yanoikuyae is not known and presents an exciting challenge for future studies.
拜叶林克氏菌属菌株B1能以联苯作为唯一碳源和能源生长。一株突变体菌株B8/36可将联苯氧化为顺式-(2S,3R)-二羟基-1-苯基环己-4,6-二烯(顺式联苯二氢二醇)。菌株B8/36可将蒽、菲、苯并[a]蒽和苯并[a]芘氧化为顺式二氢二醇。其他被氧化为顺式二氢二醇的底物有二苯并呋喃、二苯并噻吩和二苯并-对-二恶英。在联苯、间二甲苯、对二甲苯和水杨酸盐存在的情况下培养后,在拜叶林克氏菌B1和B8/36的细胞中观察到了联苯双加氧酶活性。最近的研究导致拜叶林克氏菌B1被重新分类为矢野鞘氨醇单胞菌菌株B1。随后的生物转化研究表明,矢野鞘氨醇单胞菌B8/36将芘氧化为在3,4-和9,10-位带有羟基取代基的双顺式二醇。二氢萘被氧化为顺式-1,2-二羟基-1,2,3,4-四氢萘、萘、顺式-1,2-二羟基-1,2-二氢萘和2-羟基-1,2-二氢萘。苯甲醚和苯乙醚被氧化为苯酚。因此,矢野鞘氨醇单胞菌联苯双加氧酶催化顺式二羟基化、苄基单羟基化、去饱和化和脱烷基化反应。迄今为止,编码联苯双加氧酶的基因尚未被克隆。然而,矢野鞘氨醇单胞菌B1 DNA片段的核苷酸序列包含五个不同的α亚基,这是通过在Rieske [2Fe-2S]中心配位铁和催化位点的单核铁的保守氨基酸确定的。不同假定加氧酶在矢野鞘氨醇单胞菌催化的生物转化反应中的具体作用尚不清楚,这为未来的研究提出了一个令人兴奋的挑战。