Demanèche Sandrine, Meyer Christine, Micoud Julien, Louwagie Mathilde, Willison John C, Jouanneau Yves
Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Unité Mixte de Recherche CEA-CNRS-Université Josphe Fourier-UMR 5092, Grenoble, France.
Appl Environ Microbiol. 2004 Nov;70(11):6714-25. doi: 10.1128/AEM.70.11.6714-6725.2004.
In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation in the chrysene-degrading organism Sphingomonas sp. strain CHY-1 were investigated. [14C]chrysene mineralization experiments showed that PAH-grown bacteria produced high levels of chrysene-catabolic activity. One PAH-induced protein displayed similarity with a ring-hydroxylating dioxygenase beta subunit, and a second PAH-induced protein displayed similarity with an extradiol dioxygenase. The genes encoding these proteins were cloned, and sequence analysis revealed two distinct loci containing clustered catabolic genes with strong similarities to corresponding genes found in Novosphingobium aromaticivorans F199. In the first locus, two genes potentially encoding a terminal dioxygenase component, designated PhnI, were followed by a gene coding for an aryl alcohol dehydrogenase (phnB). The second locus contained five genes encoding an extradiol dioxygenase (phnC), a ferredoxin (phnA3), another oxygenase component (PhnII), and an isomerase (phnD). PhnI was found to be capable of converting several PAHs, including chrysene, to the corresponding dihydrodiols. The activity of PhnI was greatly enhanced upon coexpression of genes encoding a ferredoxin (phnA3) and a reductase (phnA4). Disruption of the phnA1a gene encoding the PhnI alpha subunit resulted in a mutant strain that had lost the ability to grow on PAHs. The recombinant PhnII enzyme overproduced in Escherichia coli functioned as a salicylate 1-hydroxylase. PhnII also used methylsalicylates and anthranilate as substrates. Our results indicated that a single enzyme (PhnI) was responsible for the initial attack of a range of PAHs, including chrysene, in strain CHY-1. Furthermore, the conversion of salicylate to catechol was catalyzed by a three-component oxygenase unrelated to known salicylate hydroxylases.
在本研究中,对降解芘的鞘氨醇单胞菌属(Sphingomonas sp.)菌株CHY-1中参与多环芳烃(PAH)降解的酶进行了研究。[14C]芘矿化实验表明,以PAH为生长底物的细菌产生了高水平的芘分解代谢活性。一种PAH诱导蛋白与环羟基化双加氧酶β亚基具有相似性,另一种PAH诱导蛋白与间位双加氧酶具有相似性。编码这些蛋白的基因被克隆,序列分析揭示了两个不同的位点,其中包含成簇的分解代谢基因,与在新鞘氨醇菌属(Novosphingobium)芳香ivorans F199中发现的相应基因具有高度相似性。在第一个位点,两个可能编码末端双加氧酶组分的基因,命名为PhnI,后面跟着一个编码芳基醇脱氢酶(phnB)的基因。第二个位点包含五个基因,分别编码间位双加氧酶(phnC)、铁氧化还原蛋白(phnA3)、另一种加氧酶组分(PhnII)和异构酶(phnD)。发现PhnI能够将包括芘在内的几种PAH转化为相应的二氢二醇。当共表达编码铁氧化还原蛋白(phnA3)和还原酶(phnA4)的基因时,PhnI的活性大大增强。编码PhnIα亚基的phnA1a基因的破坏导致一个突变菌株,该菌株失去了在PAH上生长的能力。在大肠杆菌中过量产生的重组PhnII酶作为水杨酸1-羟化酶发挥作用。PhnII也使用甲基水杨酸酯和邻氨基苯甲酸作为底物。我们的结果表明,单一酶(PhnI)负责菌株CHY-1中包括芘在内的一系列PAH的初始攻击。此外,水杨酸向儿茶酚的转化由一种与已知水杨酸羟化酶无关的三组分加氧酶催化。