Microbial Engineering, University of Minnesotagrid.17635.36, St. Paul, Minnesota, USA.
Biochemistry, Molecular Biology and Biophysics, University of Minnesotagrid.17635.36, St. Paul, Minnesota, USA.
mBio. 2021 Dec 21;12(6):e0300121. doi: 10.1128/mBio.03001-21. Epub 2021 Nov 16.
Perfluorinated carbon atoms in a diether linkage are common in commercial anesthetics, drugs, fungicides, and insecticides. An important chemical group comprising perfluorodiethers is the 2,2-fluoro-1,3-benzodioxole (DFBD) moiety. The fluorine atoms stabilize the molecule by mitigating against metabolism by humans and microbes, as used in drugs and pesticides, respectively. Pseudomonas putida F1 catalyzed defluorination of DFBD at an initial rate of 2,100 nmol/h per mg cellular protein. This is orders of magnitude higher than previously reported microbial defluorination rates with multiply fluorinated carbon atoms. Defluorination rates declined after several hours, and the medium darkened. Significant defluorination activity was observed with cells grown on toluene but not l-arginine. Defluorination required only toluene dioxygenase. Pseudomonas and recombinant Escherichia coli cells expressing toluene dioxygenase oxidized DFBD to DFBD-4,5-dihydrodiol. The dihydrodiol could be oxidized to 4,5-dihydroxy-DFBD via the dihydrodiol dehydrogenase from P. putida F1. The dihydrodiol dehydrated with acid to yield a mixture of 4-hydroxy-DFBD and 5-hydroxy-DFBD. All those metabolites retained the difluoromethylene group; no fluoride or dark color was observed. The major route of DFBD-4,5-dihydrodiol decomposition produced fluoride and 1,2,3-trihydroxybenzene, or pyrogallol, and that was shown to be the source of the dark colors in the medium. A mechanism for DFBD-4,5-dihydrodiol transformation to two fluoride ions and pyrogallol is proposed. The Pseudomonas genome database and other databases revealed hundreds of bacteria with enzymes sharing high amino acid sequence identity to toluene dioxygenase from P. putida F1, suggesting the mechanism revealed here may apply to the defluorination of DFBD-containing compounds in the environment. There are more than 9,000 polyfluorinated compounds developed for commercial use, some negatively impacting human health, and they are generally considered to be resistant to biodegradation. Only a limited number of studies have identified microbes with enzymes sufficiently reactive to defluorinate difluoromethylene carbon groups. The present study examined one important group of commercial fluorinated chemicals and showed its rapid defluorination by a bacterium and its key enzyme, a Rieske dioxygenase. Rieske dioxygenases are common in environmental bacteria, and those closely resembling toluene dioxygenase from Pseudomonas putida F1 are candidates for biodegradative defluorination of the common 2,2-fluoro-1,3-benzodioxole (DFBD) moiety.
饮食醚键中的全氟碳原子在商业麻醉剂、药物、杀真菌剂和杀虫剂中很常见。全氟二醚的一个重要化学基团是 2,2-氟-1,3-苯并二恶唑(DFBD)部分。氟原子通过分别减缓人类和微生物的新陈代谢来稳定分子,从而用于药物和农药。恶臭假单胞菌 F1 以每毫克细胞蛋白 2,100nmol/h 的初始速率催化 DFBD 的脱氟。这比以前报道的具有多个氟原子的微生物脱氟速率高出几个数量级。几个小时后,脱氟速率下降,培养基变暗。在用甲苯而不是 L-精氨酸培养的细胞中观察到显著的脱氟活性。脱氟仅需要甲苯双加氧酶。表达甲苯双加氧酶的恶臭假单胞菌和重组大肠杆菌细胞将 DFBD 氧化为 DFBD-4,5-二氢二醇。二氢二醇可通过恶臭假单胞菌 F1 的二氢二醇脱氢酶氧化为 4,5-二羟基-DFBD。二氢二醇在酸中脱水生成 4-羟基-DFBD 和 5-羟基-DFBD 的混合物。所有这些代谢物都保留了二氟亚甲基基团;没有观察到氟化物或暗颜色。DFBD-4,5-二氢二醇分解的主要途径产生氟化物和 1,2,3-三羟基苯,或焦儿茶酚,这被证明是培养基中暗颜色的来源。提出了一种 DFBD-4,5-二氢二醇转化为两个氟离子和焦儿茶酚的机制。假单胞菌基因组数据库和其他数据库揭示了数以百计的细菌,其酶与恶臭假单胞菌 F1 的甲苯双加氧酶具有高度的氨基酸序列同一性,这表明这里揭示的机制可能适用于环境中含 DFBD 化合物的脱氟。已经开发了 9000 多种用于商业用途的多氟化合物,其中一些对人类健康有负面影响,并且通常被认为难以生物降解。只有少数研究确定了具有足够活性脱氟化二氟亚甲基碳基团的微生物。本研究检查了一组重要的商业含氟化学品,并显示了一种细菌及其关键酶, Rieske 双加氧酶,对其的快速脱氟作用。Rieske 双加氧酶在环境细菌中很常见,与恶臭假单胞菌 F1 的甲苯双加氧酶非常相似的那些是常见的 2,2-氟-1,3-苯并二恶唑(DFBD)部分生物降解脱氟的候选物。