Suppr超能文献

细胞因子激活的小鼠巨噬细胞中的蛋白质酪氨酸硝化作用。过氧化物酶/亚硝酸盐途径而非过氧亚硝酸盐的参与。

Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite.

作者信息

Pfeiffer S, Lass A, Schmidt K, Mayer B

机构信息

Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.

出版信息

J Biol Chem. 2001 Sep 7;276(36):34051-8. doi: 10.1074/jbc.M100585200. Epub 2001 Jun 25.

Abstract

Peroxynitrite, formed in a rapid reaction of nitric oxide (NO) and superoxide anion radical (O(2)), is thought to mediate protein tyrosine nitration in various inflammatory and infectious diseases. However, a recent in vitro study indicated that peroxynitrite exhibits poor nitrating efficiency at biologically relevant steady-state concentrations (Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) J. Biol. Chem. 275, 6346-6352). To investigate the molecular mechanism of protein tyrosine nitration in intact cells, murine RAW 264.7 macrophages were activated with immunological stimuli, causing inducible NO synthase expression (interferon-gamma in combination with either lipopolysaccharide or zymosan A), followed by the determination of protein-bound 3-nitrotyrosine levels and release of potential triggers of nitration (NO, O(2)*, H(2)O(2), peroxynitrite, and nitrite). Levels of 3-nitrotyrosine started to increase at 16-18 h and exhibited a maximum at 20-24 h post-stimulation. Formation of O(2) was maximal at 1-5 h and decreased to base line 5 h after stimulation. Release of NO peaked at approximately 6 and approximately 9 h after stimulation with interferon-gamma/lipopolysaccharide and interferon-gamma/zymosan A, respectively, followed by a rapid decline to base line within the next 4 h. NO formation resulted in accumulation of nitrite, which leveled off at about 50 microm 15 h post-stimulation. Significant release of peroxynitrite was detectable only upon treatment of cytokine-activated cells with phorbol 12-myristate-13-acetate, which led to a 2.2-fold increase in dihydrorhodamine oxidation without significantly increasing the levels of 3-nitrotyrosine. Tyrosine nitration was inhibited by azide and catalase and mimicked by incubation of unstimulated cells with nitrite. Together with the striking discrepancy in the time course of NO/O(2) release versus 3-nitrotyrosine formation, these results suggest that protein tyrosine nitration in activated macrophages is caused by a nitrite-dependent peroxidase reaction rather than peroxynitrite.

摘要

过氧亚硝酸盐是由一氧化氮(NO)和超氧阴离子自由基(O₂⁻)快速反应形成的,被认为在各种炎症和感染性疾病中介导蛋白质酪氨酸硝化。然而,最近的一项体外研究表明,在生物学相关的稳态浓度下,过氧亚硝酸盐的硝化效率很低(Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) J. Biol. Chem. 275, 6346 - 6352)。为了研究完整细胞中蛋白质酪氨酸硝化的分子机制,用免疫刺激激活小鼠RAW 264.7巨噬细胞,诱导诱导型一氧化氮合酶表达(γ干扰素与脂多糖或酵母聚糖A联合使用),随后测定蛋白质结合的3 - 硝基酪氨酸水平以及硝化潜在触发因素(NO、O₂⁻、H₂O₂、过氧亚硝酸盐和亚硝酸盐)的释放。3 - 硝基酪氨酸水平在刺激后16 - 18小时开始升高,并在20 - 24小时达到最大值。O₂⁻的形成在1 - 5小时达到最大值,并在刺激后5小时降至基线。用γ干扰素/脂多糖和γ干扰素/酵母聚糖A刺激后,NO的释放分别在大约6小时和大约9小时达到峰值,随后在接下来的4小时内迅速降至基线。NO的形成导致亚硝酸盐积累,在刺激后15小时左右达到约50 μmol并趋于稳定。仅在用佛波醇12 - 肉豆蔻酸酯 - 13 - 乙酸处理细胞因子激活的细胞后,才能检测到过氧亚硝酸盐的显著释放,这导致二氢罗丹明氧化增加2.2倍,而3 - 硝基酪氨酸水平没有显著增加。酪氨酸硝化受到叠氮化物和过氧化氢酶的抑制,并且通过用亚硝酸盐孵育未刺激的细胞来模拟。连同NO/O₂⁻释放与3 - 硝基酪氨酸形成的时间进程中的显著差异,这些结果表明活化巨噬细胞中的蛋白质酪氨酸硝化是由亚硝酸盐依赖性过氧化物酶反应而非过氧亚硝酸盐引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验