Suppr超能文献

在过氧亚硝酸盐低稳态浓度下,二酪氨酸的形成比酪氨酸硝化更具优势。这对体内一氧化氮/超氧化物介导的酪氨酸修饰的意义。

Dityrosine formation outcompetes tyrosine nitration at low steady-state concentrations of peroxynitrite. Implications for tyrosine modification by nitric oxide/superoxide in vivo.

作者信息

Pfeiffer S, Schmidt K, Mayer B

机构信息

Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.

出版信息

J Biol Chem. 2000 Mar 3;275(9):6346-52. doi: 10.1074/jbc.275.9.6346.

Abstract

Formation of peroxynitrite from NO and O-(*2) is considered an important trigger for cellular tyrosine nitration under pathophysiological conditions. However, this view has been questioned by a recent report indicating that NO and O-(*2) generated simultaneously from (Z)-1-(N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino) diazen-1-ium-1,2-diolate] (SPER/NO) and hypoxanthine/xanthine oxidase, respectively, exhibit much lower nitrating efficiency than authentic peroxynitrite (Pfeiffer, S. and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285). The present study extends those earlier findings to several alternative NO/O-(*2)-generating systems and provides evidence that the apparent lack of tyrosine nitration by NO/O-(2) is due to a pronounced decrease of nitration efficiency at low steady-state concentrations of authentic peroxynitrite. The decrease in the yields of 3-nitrotyrosine was accompanied by an increase in the recovery of dityrosine, showing that dimerization of tyrosine radicals outcompetes the nitration reaction at low peroxynitrite concentrations. The observed inverse dependence on peroxynitrite concentration of dityrosine formation and tyrosine nitration is predicted by a kinetic model assuming that radical formation by peroxynitrous acid homolysis results in the generation of tyrosyl radicals that either dimerize to yield dityrosine or combine with ()NO(2) radical to form 3-nitrotyrosine. The present results demonstrate that very high fluxes (>2 microM/s) of NO/O-(*2) are required to render peroxynitrite an efficient trigger of tyrosine nitration and that dityrosine is a major product of tyrosine modification caused by low steady-state concentrations of peroxynitrite.

摘要

在病理生理条件下,由一氧化氮(NO)和超氧阴离子(O-(*2))形成过氧亚硝酸盐被认为是细胞酪氨酸硝化的重要触发因素。然而,最近一份报告对这一观点提出了质疑,该报告指出,分别由(Z)-1-(N-[3-氨基丙基]-N-[4-(3-氨基丙基铵基)丁基]-氨基)重氮-1,2-二醇盐(SPER/NO)和次黄嘌呤/黄嘌呤氧化酶同时产生的NO和O-(*2),其硝化效率远低于真正的过氧亚硝酸盐(Pfeiffer, S.和Mayer, B. (1998) J. Biol. Chem. 273, 27280 - 27285)。本研究将这些早期发现扩展到了几种其他的NO/O-(*2)生成系统,并提供证据表明,NO/O-(2)明显缺乏酪氨酸硝化作用是由于在真正的过氧亚硝酸盐低稳态浓度下硝化效率显著降低所致。3-硝基酪氨酸产量的降低伴随着二酪氨酸回收率的增加,这表明在低过氧亚硝酸盐浓度下,酪氨酸自由基的二聚作用胜过硝化反应。通过动力学模型预测了观察到的二酪氨酸形成和酪氨酸硝化对过氧亚硝酸盐浓度的反向依赖性,该模型假设过氧亚硝酸酸解产生自由基会生成酪氨酸自由基,这些自由基要么二聚生成二酪氨酸,要么与()NO(2)自由基结合形成3-硝基酪氨酸。目前的结果表明,需要非常高的NO/O-(*2)通量(>2 microM/s)才能使过氧亚硝酸盐成为酪氨酸硝化的有效触发因素,并且二酪氨酸是低稳态浓度过氧亚硝酸盐引起的酪氨酸修饰的主要产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验