Suppr超能文献

SPINE:一种用于在高通量结构蛋白质组学中识别可行靶点的集成跟踪数据库和数据挖掘方法。

SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics.

作者信息

Bertone P, Kluger Y, Lan N, Zheng D, Christendat D, Yee A, Edwards A M, Arrowsmith C H, Montelione G T, Gerstein M

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.

出版信息

Nucleic Acids Res. 2001 Jul 1;29(13):2884-98. doi: 10.1093/nar/29.13.2884.

Abstract

High-throughput structural proteomics is expected to generate considerable amounts of data on the progress of structure determination for many proteins. For each protein this includes information about cloning, expression, purification, biophysical characterization and structure determination via NMR spectroscopy or X-ray crystallography. It will be essential to develop specifications and ontologies for standardizing this information to make it amenable to retrospective analysis. To this end we created the SPINE database and analysis system for the Northeast Structural Genomics Consortium. SPINE, which is available at bioinfo.mbb.yale.edu/nesg or nesg.org, is specifically designed to enable distributed scientific collaboration via the Internet. It was designed not just as an information repository but as an active vehicle to standardize proteomics data in a form that would enable systematic data mining. The system features an intuitive user interface for interactive retrieval and modification of expression construct data, query forms designed to track global project progress and external links to many other resources. Currently the database contains experimental data on 985 constructs, of which 740 are drawn from Methanobacterium thermoautotrophicum, 123 from Saccharomyces cerevisiae, 93 from Caenorhabditis elegans and the remainder from other organisms. We developed a comprehensive set of data mining features for each protein, including several related to experimental progress (e.g. expression level, solubility and crystallization) and 42 based on the underlying protein sequence (e.g. amino acid composition, secondary structure and occurrence of low complexity regions). We demonstrate in detail the application of a particular machine learning approach, decision trees, to the tasks of predicting a protein's solubility and propensity to crystallize based on sequence features. We are able to extract a number of key rules from our trees, in particular that soluble proteins tend to have significantly more acidic residues and fewer hydrophobic stretches than insoluble ones. One of the characteristics of proteomics data sets, currently and in the foreseeable future, is their intermediate size ( approximately 500-5000 data points). This creates a number of issues in relation to error estimation. Initially we estimate the overall error in our trees based on standard cross-validation. However, this leaves out a significant fraction of the data in model construction and does not give error estimates on individual rules. Therefore, we present alternative methods to estimate the error in particular rules.

摘要

高通量结构蛋白质组学有望生成大量有关许多蛋白质结构测定进展的数据。对于每种蛋白质,这些数据包括有关克隆、表达、纯化、生物物理表征以及通过核磁共振光谱法或X射线晶体学进行结构测定的信息。制定规范和本体以标准化这些信息,使其便于进行回顾性分析至关重要。为此,我们为东北结构基因组学联盟创建了SPINE数据库和分析系统。SPINE可在bioinfo.mbb.yale.edu/nesg或nesg.org上获取,专门设计用于通过互联网实现分布式科学协作。它不仅被设计为一个信息存储库,而且是一种以能够进行系统数据挖掘的形式标准化蛋白质组学数据的有效工具。该系统具有直观的用户界面,用于交互式检索和修改表达构建体数据、旨在跟踪全球项目进展的查询表单以及与许多其他资源的外部链接。目前,该数据库包含985个构建体的实验数据,其中740个来自嗜热自养甲烷杆菌,123个来自酿酒酵母,93个来自秀丽隐杆线虫,其余来自其他生物体。我们为每种蛋白质开发了一套全面的数据挖掘功能,包括一些与实验进展相关的功能(例如表达水平、溶解度和结晶)以及基于基础蛋白质序列的42个功能(例如氨基酸组成、二级结构和低复杂性区域的出现)。我们详细展示了一种特定的机器学习方法——决策树在基于序列特征预测蛋白质溶解度和结晶倾向任务中的应用。我们能够从我们的树中提取一些关键规则,特别是可溶性蛋白质往往比不溶性蛋白质具有明显更多的酸性残基和更少的疏水片段。蛋白质组学数据集目前以及在可预见的未来的一个特征是它们的中等规模(大约500 - 5000个数据点)。这在误差估计方面产生了一些问题。最初,我们基于标准交叉验证估计我们树中的总体误差。然而,这在模型构建中遗漏了很大一部分数据,并且没有给出单个规则的误差估计。因此,我们提出了替代方法来估计特定规则中的误差。

相似文献

2
SPINE 2: a system for collaborative structural proteomics within a federated database framework.
Nucleic Acids Res. 2003 Jun 1;31(11):2833-8. doi: 10.1093/nar/gkg397.
6
Data mining in protein interactomics. Six computational research challenges and opportunities.
IEEE Eng Med Biol Mag. 2005 May-Jun;24(3):95-102. doi: 10.1109/memb.2005.1436466.
7
Structural proteomics of an archaeon.
Nat Struct Biol. 2000 Oct;7(10):903-9. doi: 10.1038/82823.
8
DEPD: a novel database for differentially expressed proteins.
Bioinformatics. 2005 Sep 15;21(18):3694-6. doi: 10.1093/bioinformatics/bti580. Epub 2005 Jul 14.
9
Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML database--Xindice.
BMC Bioinformatics. 2006 Jan 11;7:13. doi: 10.1186/1471-2105-7-13.
10
Textpresso: an ontology-based information retrieval and extraction system for biological literature.
PLoS Biol. 2004 Nov;2(11):e309. doi: 10.1371/journal.pbio.0020309. Epub 2004 Sep 21.

引用本文的文献

1
OPT: Codon optimize gene sequences for E. coli protein overexpression.
J Mol Biol. 2025 Aug 1;437(15):168965. doi: 10.1016/j.jmb.2025.168965. Epub 2025 Jan 28.
4
SpecDB: A relational database for archiving biomolecular NMR spectral data.
J Magn Reson. 2022 Sep;342:107268. doi: 10.1016/j.jmr.2022.107268. Epub 2022 Jul 16.
5
Generation of a Library of Carbohydrate-Active Enzymes for Plant Biomass Deconstruction.
Int J Mol Sci. 2022 Apr 5;23(7):4024. doi: 10.3390/ijms23074024.
6
DeepSol: a deep learning framework for sequence-based protein solubility prediction.
Bioinformatics. 2018 Aug 1;34(15):2605-2613. doi: 10.1093/bioinformatics/bty166.
7
A statistical model for improved membrane protein expression using sequence-derived features.
J Biol Chem. 2018 Mar 30;293(13):4913-4927. doi: 10.1074/jbc.RA117.001052. Epub 2018 Jan 29.
8
PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine.
Bioinformatics. 2018 Apr 1;34(7):1092-1098. doi: 10.1093/bioinformatics/btx662.
9
Critical evaluation of bioinformatics tools for the prediction of protein crystallization propensity.
Brief Bioinform. 2018 Sep 28;19(5):838-852. doi: 10.1093/bib/bbx018.
10
The accurate assessment of small-angle X-ray scattering data.
Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):45-56. doi: 10.1107/S1399004714010876.

本文引用的文献

2
Structural proteomics of an archaeon.
Nat Struct Biol. 2000 Oct;7(10):903-9. doi: 10.1038/82823.
3
Protein folds in the worm genome.
Pac Symp Biocomput. 2000:30-41. doi: 10.1142/9789814447331_0004.
4
BIND--a data specification for storing and describing biomolecular interactions, molecular complexes and pathways.
Bioinformatics. 2000 May;16(5):465-77. doi: 10.1093/bioinformatics/16.5.465.
6
Systematic management and analysis of yeast gene expression data.
Genome Res. 2000 Apr;10(4):431-45. doi: 10.1101/gr.10.4.431.
7
DIP: the database of interacting proteins.
Nucleic Acids Res. 2000 Jan 1;28(1):289-91. doi: 10.1093/nar/28.1.289.
8
The Protein Data Bank.
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.
9
ProtoMap: automatic classification of protein sequences and hierarchy of protein families.
Nucleic Acids Res. 2000 Jan 1;28(1):49-55. doi: 10.1093/nar/28.1.49.
10
The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.
Nucleic Acids Res. 2000 Jan 1;28(1):45-8. doi: 10.1093/nar/28.1.45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验