Chappuis-Flament S, Wong E, Hicks L D, Kay C M, Gumbiner B M
Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA.
J Cell Biol. 2001 Jul 9;154(1):231-43. doi: 10.1083/jcb.200103143.
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.
钙黏蛋白的细胞外嗜同性结合结构域由5个钙黏蛋白重复序列(EC1 - EC5)组成。关于钙黏蛋白特异性的研究表明,氨基末端的EC1结构域参与嗜同性结合相互作用,但其他细胞外钙黏蛋白(EC)结构域的作用尚未得到评估。我们对整个钙黏蛋白细胞外结构域的结合特性以及其他EC结构域对嗜同性结合的贡献进行了系统分析。细胞外结构域的侧向(顺式)二聚化被认为是黏附功能所必需的。对C - 钙黏蛋白可溶性细胞外片段的沉降分析表明,它以单体 - 二聚体平衡的形式存在,亲和常数约为64微摩尔。未检测到更高阶的寡聚体,这表明顺式二聚体之间的嗜同性结合亲和力显著较低。使用珠子聚集试验和基于细胞附着的黏附试验,分析了一系列缺失构建体的嗜同性结合特性,这些构建体在COOH末端与Fc结构域融合,缺少连续或单个的EC结构域。与整个细胞外结构域(CEC1 - 5Fc)相比,仅具有前两个氨基末端EC结构域的蛋白质(CEC1 - 2Fc)表现出非常低的活性,这表明仅EC1不足以进行有效的嗜同性结合。CEC1 - 3Fc表现出高活性,但不如CEC1 - 4Fc或CEC1 - 5Fc。然而,嗜同性结合并不需要EC3,因为CEC1 - 2 - 4Fc和CEC1 - 2 - 4 - 5Fc在两种试验中均表现出高活性。这些以及使用其他EC组合的实验表明,许多(如果不是全部)EC结构域都有助于钙黏蛋白嗜同性键的形成,并且可能不需要特定EC结构域之间特定的一对一相互作用。这些结论与先前关于钙黏蛋白胞外结构域之间直接分子力测量的研究一致,该研究证明了多种黏附相互作用(Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820 - 11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758 - 68)。我们提出了关于钙黏蛋白细胞外重复序列如何有助于黏附特异性和功能的新模型。