Suppr超能文献

RescueMu转座子在转基因玉米中的体细胞和生殖系移动性。

Somatic and germinal mobility of the RescueMu transposon in transgenic maize.

作者信息

Raizada M N, Nan G L, Walbot V

机构信息

Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.

出版信息

Plant Cell. 2001 Jul;13(7):1587-608. doi: 10.1105/tpc.010002.

Abstract

RescueMu, a Mu1 element containing a bacterial plasmid, is mobilized by MuDR in transgenic maize. Somatic excision from a cell-autonomous marker gene yields >90% single cell sectors; empty donor sites often have deletions and insertions, including up to 210 bp of RescueMu/Mu1 terminal DNA. Late somatic insertions are contemporaneous with excisions, suggesting that "cut-and-paste" transposition occurs in the soma. During reproduction, RescueMu transposes infrequently from the initial transgene array, but once transposed, RescueMu is suitable for high throughput gene mutation and cloning. As with MuDR/Mu elements, heritable RescueMu insertions are not associated with excisions. Both somatic and germinal RescueMu insertions occur preferentially into genes and gene-like sequences, but they exhibit weak target site preferences. New insights into Mu behaviors are discussed with reference to two models proposed to explain the alternative outcomes of somatic and germinal events: a switch from somatic cut-and-paste to germinal replicative transposition or to host-mediated gap repair from sister chromatids.

摘要

RescueMu是一种含有细菌质粒的Mu1元件,在转基因玉米中由MuDR激活。从细胞自主标记基因进行体细胞切除可产生超过90%的单细胞扇形区;空的供体位点常有缺失和插入,包括长达210 bp的RescueMu/Mu1末端DNA。晚期体细胞插入与切除同时发生,这表明“剪切粘贴”转座发生在体细胞中。在繁殖过程中,RescueMu很少从初始转基因阵列中转座,但一旦转座,RescueMu就适用于高通量基因突变和克隆。与MuDR/Mu元件一样,可遗传的RescueMu插入与切除无关。体细胞和生殖细胞中的RescueMu插入都优先发生在基因和类基因序列中,但它们表现出较弱的靶位点偏好性。参照提出的两种模型讨论了对Mu行为的新见解,这两种模型用于解释体细胞和生殖细胞事件的不同结果:从体细胞的“剪切粘贴”转座转变为生殖细胞的复制性转座,或转变为宿主介导的姐妹染色单体间隙修复。

相似文献

1
Somatic and germinal mobility of the RescueMu transposon in transgenic maize.
Plant Cell. 2001 Jul;13(7):1587-608. doi: 10.1105/tpc.010002.
2
RescueMu protocols for maize functional genomics.
Methods Mol Biol. 2003;236:37-58. doi: 10.1385/1-59259-413-1:37.
3
Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize.
Genetics. 2007 Jan;175(1):31-9. doi: 10.1534/genetics.106.064238. Epub 2006 Oct 22.
4
Genome-wide mutagenesis of Zea mays L. using RescueMu transposons.
Genome Biol. 2004;5(10):R82. doi: 10.1186/gb-2004-5-10-r82. Epub 2004 Sep 23.
6
Germinal and somatic products of Mu1 excision from the Bronze-1 gene of Zea mays.
Mol Gen Genet. 1991 Jun;227(2):267-76. doi: 10.1007/BF00259680.
7
TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.
Plant Cell. 2013 Sep;25(9):3251-65. doi: 10.1105/tpc.113.116517. Epub 2013 Sep 13.
8
Plasmid rescue: recovery of flanking genomic sequences from transgenic transposon insertion sites.
Methods Mol Biol. 2009;526:101-9. doi: 10.1007/978-1-59745-494-0_8.
9
Role of RAD51 in the repair of MuDR-induced double-strand breaks in maize (Zea mays L.).
Genetics. 2008 Jan;178(1):57-66. doi: 10.1534/genetics.107.080374.

引用本文的文献

1
Creating a gene-indexed EMS mutation library of Zheng58 for improving maize genetics research.
Theor Appl Genet. 2025 Mar 27;138(4):83. doi: 10.1007/s00122-025-04878-z.
2
Independent evolution of transposase and TIRs facilitated by recombination between transposons from divergent clades in maize.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305298120. doi: 10.1073/pnas.2305298120. Epub 2023 Jul 25.
4
A Sequence-Indexed Insertional Library for Maize Functional Genomics Study.
Plant Physiol. 2019 Dec;181(4):1404-1414. doi: 10.1104/pp.19.00894. Epub 2019 Oct 21.
6
L1 retrotransposition in the soma: a field jumping ahead.
Mob DNA. 2018 Jul 7;9:22. doi: 10.1186/s13100-018-0128-1. eCollection 2018.
8
Transposition of a rice Mutator-like element in the yeast Saccharomyces cerevisiae.
Plant Cell. 2015 Jan;27(1):132-48. doi: 10.1105/tpc.114.128488. Epub 2015 Jan 13.
9
Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris).
Front Plant Sci. 2014 Jul 11;5:339. doi: 10.3389/fpls.2014.00339. eCollection 2014.
10
Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy.
PLoS One. 2014 Jan 31;9(1):e87053. doi: 10.1371/journal.pone.0087053. eCollection 2014.

本文引用的文献

2
Bialaphos selection of stable transformants from maize cell culture.
Theor Appl Genet. 1990 May;79(5):625-31. doi: 10.1007/BF00226875.
3
A regulatory gene as a novel visible marker for maize transformation.
Science. 1990 Jan 26;247(4941):449-50. doi: 10.1126/science.247.4941.449.
4
Mutator activity in maize: timing of its activation in ontogeny.
Science. 1981 Sep 25;213(4515):1515-7. doi: 10.1126/science.213.4515.1515.
5
Plant transposable elements generate the DNA sequence diversity needed in evolution.
EMBO J. 1985 Mar;4(3):591-7. doi: 10.1002/j.1460-2075.1985.tb03671.x.
6
Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize.
Plant Cell. 1989 May;1(5):523-532. doi: 10.1105/tpc.1.5.523.
7
Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants.
Plant Cell. 1990 Jul;2(7):603-618. doi: 10.1105/tpc.2.7.603.
8
A maize MuDR transposon promoter shows limited autoregulation.
Mol Genet Genomics. 2001 Mar;265(1):82-94. doi: 10.1007/s004380000393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验