Suppr超能文献

一种用于改进蛋白质结构选择的基于原子知识的距离依赖势。

A distance-dependent atomic knowledge-based potential for improved protein structure selection.

作者信息

Lu H, Skolnick J

机构信息

Laboratory of Computational Genomics, Donald Danforth Plant Science Center, St. Louis, Missouri 63141, USA.

出版信息

Proteins. 2001 Aug 15;44(3):223-32. doi: 10.1002/prot.1087.

Abstract

A heavy atom distance-dependent knowledge-based pairwise potential has been developed. This statistical potential is first evaluated and optimized with the native structure z-scores from gapless threading. The potential is then used to recognize the native and near-native structures from both published decoy test sets, as well as decoys obtained from our group's protein structure prediction program. In the gapless threading test, there is an average z-score improvement of 4 units in the optimized atomic potential over the residue-based quasichemical potential. Examination of the z-scores for individual pairwise distance shells indicates that the specificity for the native protein structure is greatest at pairwise distances of 3.5-6.5 A, i.e., in the first solvation shell. On applying the current atomic potential to test sets obtained from the web, composed of native protein and decoy structures, the current generation of the potential performs better than residue-based potentials as well as the other published atomic potentials in the task of selecting native and near-native structures. This newly developed potential is also applied to structures of varying quality generated by our group's protein structure prediction program. The current atomic potential tends to pick lower RMSD structures than do residue-based contact potentials. In particular, this atomic pairwise interaction potential has better selectivity especially for near-native structures. As such, it can be used to select near-native folds generated by structure prediction algorithms as well as for protein structure refinement.

摘要

已开发出一种基于重原子距离的知识型成对势。该统计势首先通过无间隙穿线法得到的天然结构z分数进行评估和优化。然后,该势被用于从已发表的诱饵测试集以及我们小组蛋白质结构预测程序得到的诱饵中识别天然和近天然结构。在无间隙穿线测试中,优化后的原子势的平均z分数比基于残基的准化学势提高了4个单位。对各个成对距离壳层的z分数进行检查表明,对天然蛋白质结构的特异性在成对距离为3.5 - 6.5埃时最大,即在第一溶剂化壳层中。将当前的原子势应用于从网络获得的由天然蛋白质和诱饵结构组成的测试集时,在选择天然和近天然结构的任务中,当前一代的势比基于残基的势以及其他已发表的原子势表现更好。这种新开发的势也应用于我们小组蛋白质结构预测程序生成的不同质量的结构。与基于残基的接触势相比,当前的原子势倾向于选择RMSD较低的结构。特别是,这种原子成对相互作用势具有更好的选择性,尤其是对近天然结构。因此,它可用于选择由结构预测算法生成的近天然折叠以及用于蛋白质结构优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验