Coutelle O, Blagden C S, Hampson R, Halai C, Rigby P W, Hughes S M
Division of Eukaryotic Molecular Genetics, MRC National Institute for Medical Research, London, United Kingdom.
Dev Biol. 2001 Aug 1;236(1):136-50. doi: 10.1006/dbio.2001.0193.
Hedgehog proteins have been implicated in the control of myogenesis in the medial vertebrate somite. In the mouse, normal epaxial expression of the myogenic transcription factor gene myf5 is dependent on Sonic hedgehog. Here we examine in zebrafish the interaction between Hedgehog signals, the expression of myoD family genes, including the newly cloned zebrafish myf5, and slow myogenesis. We show that Sonic hedgehog is necessary for normal expression of both myf5 and myoD in adaxial slow muscle precursors, but not in lateral paraxial mesoderm. Expression of both genes is initiated normally in rostral presomitic mesoderm in sonic you mutants, which lack all Sonic hedgehog. Similar initiation continues during tailbud outgrowth when the cells forming caudal somites are generated. However, adaxial cells in sonic you embryos are delayed in terminal differentiation and caudal adaxial cells fail to maintain myogenic regulatory factor expression. Despite these defects, other signals are able to maintain, or reinitiate, some slow muscle development in sonic you mutants. In the cyclops mutant, the absence of floorplate-derived Tiggywinkle hedgehog and Sonic hedgehog has no discernible effect on slow adaxial myogenesis. Similarly, the absence of notochord-derived Sonic hedgehog and Echidna hedgehog in mutants lacking notochord delays, but does not prevent, adaxial slow muscle development. In contrast, removal of both Sonic hedgehog and a floorplate signal, probably Tiggywinkle hedgehog, from the embryonic midline in cyclops;sonic you double mutants essentially abolishes slow myogenesis. We conclude that several midline signals, likely to be various Hedgehogs, collaborate to maintain adaxial slow myogenesis in the zebrafish embryo. Moreover, the data demonstrate that, in the absence of this required Hedgehog signalling, expression of myf5 and myoD is insufficient to commit cells to adaxial myogenesis.
刺猬蛋白与脊椎动物体节内侧的肌生成调控有关。在小鼠中,肌源性转录因子基因myf5的正常轴上表达依赖于声波刺猬蛋白。在此,我们研究了斑马鱼中刺猬信号、肌分化抗原基因家族(包括新克隆的斑马鱼myf5)的表达与慢肌生成之间的相互作用。我们发现,声波刺猬蛋白对于轴旁慢肌前体细胞中myf5和肌分化抗原的正常表达是必需的,但对于外侧轴旁中胚层则不是。在缺乏所有声波刺猬蛋白的sonic you突变体中,这两个基因在头侧体节中胚层的表达正常起始。当形成尾侧体节的细胞产生时,在尾芽生长过程中也会持续类似的起始过程。然而,sonic you胚胎中的轴旁细胞在终末分化方面有所延迟,尾侧轴旁细胞无法维持肌源性调节因子的表达。尽管存在这些缺陷,其他信号仍能够在sonic you突变体中维持或重新启动一些慢肌发育。在独眼巨人突变体中,缺乏底板来源的刺猬索尼克和声波刺猬蛋白对轴旁慢肌生成没有明显影响。同样,在缺乏脊索的突变体中,缺乏脊索来源的声波刺猬蛋白和针鼹刺猬蛋白会延迟但不会阻止轴旁慢肌发育。相比之下,在独眼巨人;sonic you双突变体中,从胚胎中线去除声波刺猬蛋白和一种底板信号(可能是刺猬索尼克)基本上消除了慢肌生成。我们得出结论,几种中线信号(可能是各种刺猬蛋白)协同作用以维持斑马鱼胚胎中的轴旁慢肌生成。此外,数据表明,在缺乏这种必需的刺猬信号传导的情况下,myf5和肌分化抗原的表达不足以使细胞进行轴旁肌生成。