Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA.
Department of Bioengineering and Environmental Science, Changsha University, Changsha, China.
Mar Biotechnol (NY). 2022 Oct;24(5):1023-1038. doi: 10.1007/s10126-022-10159-3. Epub 2022 Sep 9.
The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.
鱼类骨骼肌的发育和生长需要肌母细胞融合来产生多核肌纤维。虽然斑马鱼的快肌可以融合产生多核纤维,但在斑马鱼胚胎和幼虫中,慢肌纤维仍然是单核的。纤维类型特异性融合控制的机制仍然难以捉摸。最近使用小鼠的遗传研究鉴定了一种长期以来被寻求的融合因子,称为 Myomixer。为了了解 Myomixer 是否参与纤维类型特异性融合,我们分析了 Myomixer 表达的转录调控,并在斑马鱼中对 Myomixer 进行基因缺失以表征肌肉生长表型。数据显示,Sonic Hedgehog (Shh) 的过表达显着抑制 Myomixer 的表达并阻止肌母细胞融合,这重现了直接从斑马鱼基因缺失 Myomixer 的表型。在 Myomixer 突变体胚胎中,通过重新表达斑马鱼 Myomixer 基因或其来自鲨鱼或人类的同源物,可以忠实地挽救融合缺陷。有趣的是,Myomixer 突变体鱼能够存活到成年阶段,尽管比野生型兄弟姐妹明显小。在成年 Myomixer 突变体的快肌和慢肌组织中都观察到严重的肌病和不受控制的脂肪浸润。总的来说,我们的数据强调了 Myomixer 基因在胚胎肌肉发育和幼虫后肌肉生长过程中细胞融合中的不可或缺作用。
Mar Biotechnol (NY). 2022-10
Proc Natl Acad Sci U S A. 2017-10-23
Mar Biotechnol (NY). 2018-11-22
J Cachexia Sarcopenia Muscle. 2021-8
Cell Mol Life Sci. 2019-10-23
Science. 2017-4-21
bioRxiv. 2025-8-23
MedComm (2020). 2024-7-10
Curr Top Dev Biol. 2024
Int J Mol Sci. 2022-11-24
Front Cell Dev Biol. 2021-10-26
Bio Protoc. 2021-9-5
Sci Adv. 2020-12-18
Cell Mol Life Sci. 2019-10-23