Brender J R, Taylor D M, Ramamoorthy A
Biophysics Research Division, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
J Am Chem Soc. 2001 Feb 7;123(5):914-22. doi: 10.1021/ja001980q.
Knowledge of the orientation of the nitrogen-15 chemical shift anisotropy (CSA) tensor is critical for a variety of experiments that provide information on protein structure and dynamics in the solid and solution states. Unfortunately, the methods available for determining the orientation of the CSA tensor experimentally have inherent limitations. Rotation studies of a single crystal provide complete information but are tedious and limited in applicability. Solid-state NMR studies on powder samples can be applied to a greater range of samples but suffer from ambiguities in the results obtained. Density functional gauge-including-atomic-orbitals (GIAO) calculations of the orientations of (15)N CSA tensors in peptides are presented here as an independent source of confirmation for these studies. A comparison of the calculated (15)N CSA orientations with the available experimental values from single-crystal and powder studies shows excellent agreement after a partial, constrained optimization of some of the crystal structures used in the calculation. The results from this study suggest that the orientation as well as the magnitudes of (15)N CSA tensors may vary from molecule to molecule. The calculated alpha(N) angle varies from 0 degrees to 24 degrees with the majority in the 10 degrees to 20 degrees range and the beta(N) angle varies from 17 degrees to 24 degrees in good agreement with most of the solid-state NMR experimental results. Hydrogen bonding is shown to have negligible effect on the orientation of (15)N CSA tensor in accordance with recent theoretical predictions. Furthermore, it is demonstrated that the orientation of the (15)N CSA can be calculated accurately with much smaller basis sets than is needed to calculate the chemical shift, suggesting that the routine application of ab initio calculations to the determination of (15)N CSA tensor orientations in large biomolecules might be possible.
了解氮 - 15化学位移各向异性(CSA)张量的取向对于多种实验至关重要,这些实验可提供有关蛋白质在固态和溶液态下的结构和动力学信息。不幸的是,通过实验确定CSA张量取向的现有方法存在固有局限性。对单晶进行的旋转研究可提供完整信息,但操作繁琐且适用性有限。对粉末样品进行的固态核磁共振研究可应用于更广泛的样品,但所得结果存在模糊性。本文介绍了对肽中(15)N CSA张量取向的密度泛函含原子轨道(GIAO)计算,作为这些研究的独立确认来源。将计算得到的(15)N CSA取向与单晶和粉末研究中可用的实验值进行比较,结果表明,在对计算中使用的一些晶体结构进行部分约束优化后,二者吻合度很高。该研究结果表明,(15)N CSA张量的取向以及大小可能因分子而异。计算得到的α(N)角在0度至24度之间变化,大多数在10度至20度范围内,β(N)角在17度至24度之间变化,与大多数固态核磁共振实验结果吻合良好。根据最近的理论预测,氢键对(15)N CSA张量的取向影响可忽略不计。此外,研究表明,计算(15)N CSA的取向所需的基组比计算化学位移所需的基组小得多,这表明从头计算法在确定大型生物分子中(15)N CSA张量取向方面的常规应用可能是可行的。