液晶和交叉相关弛豫测量中小蛋白中特定位置酰胺(15)N 化学位移各向异性张量。
Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements.
机构信息
Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
出版信息
J Am Chem Soc. 2010 Mar 31;132(12):4295-309. doi: 10.1021/ja910186u.
Site-specific (15)N chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide (15)N nuclei in the B3 domain of protein G (GB3) from residual chemical shift anisotropy (RCSA) measured in six different mutants that retain the native structure but align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension. This information is complemented by measurement of cross-correlated relaxation rates between the (15)N CSA tensor and either the (15)N-(1)H or (15)N-(13)C' dipolar interaction. In agreement with recent solid state NMR measurements, the (15)N CSA tensors exhibit only a moderate degree of variation from averaged values, but have larger magnitudes in alpha-helical (-173 +/- 7 ppm) than in beta-sheet (-162 +/- 6 ppm) residues, a finding also confirmed by quantum computations. The orientations of the least shielded tensor component cluster tightly around an in-peptide-plane vector that makes an angle of 19.6 +/- 2.5 degrees with the N-H bond, with the asymmetry of the (15)N CSA tensor being slightly smaller in alpha-helix (eta = 0.23 +/- 0.17) than in beta-sheet (eta = 0.31 +/- 0.11). The residue-specific (15)N CSA values are validated by improved agreement between computed and experimental (15)N R(1rho) relaxation rates measured for (15)N-{(2)H} sites in GB3, which are dominated by the CSA mechanism. Use of residue-specific (15)N CSA values also results in more uniform generalized order parameters, S(2), and predicts considerable residue-by-residue variations in the magnetic field strengths where TROSY line narrowing is most effective.
已从 Pf1 液晶中溶解的不同突变体中测得的残留化学各向异性(RCSA)为基础,推导出了蛋白 G(GB3)B3 结构域中有序的骨架酰胺(15)N 核的局域(15)N 化学位移各向异性(CSA)张量。该信息由(15)N CSA 张量与(15)N-(1)H 或(15)N-(13)C'偶极相互作用之间的交叉相关弛豫率的测量得到补充。与最近的固态 NMR 测量结果一致,(15)N CSA 张量的变化程度仅适中,但在α-螺旋(-173 ± 7 ppm)中比β-折叠(-162 ± 6 ppm)残基中更大,这一发现也通过量子计算得到了证实。屏蔽程度最小的张量分量的方向紧密围绕着一个在肽内平面上的向量,该向量与 N-H 键形成 19.6 ± 2.5 度的夹角,(15)N CSA 张量的不对称性在α-螺旋中略小于β-折叠(η=0.23 ± 0.17)(η=0.31 ± 0.11)。通过计算和实验(15)N R(1rho)弛豫率之间的改进一致性验证了残基特异性(15)N CSA 值,对于在 GB3 中占据主导地位的(15)N-(2)H 位点,(15)N CSA 值主要由 CSA 机制决定。使用残基特异性(15)N CSA 值还会导致更均匀的广义有序参数 S(2),并预测在 TROSY 线变窄最有效的磁场强度下,残基之间会有很大的变化。