Suppr超能文献

一种用于处理聚类删失数据的线性回归多重填补方法。

A multiple imputation approach to linear regression with clustered censored data.

作者信息

Pan W, Connett J E

机构信息

Division of Biostatistics, School of Public Health, A460 Mayo Building, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Lifetime Data Anal. 2001 Jun;7(2):111-23. doi: 10.1023/a:1011334721264.

Abstract

We extend Wei and Tanner's (1991) multiple imputation approach in semi-parametric linear regression for univariate censored data to clustered censored data. The main idea is to iterate the following two steps: 1) using the data augmentation to impute for censored failure times; 2) fitting a linear model with imputed complete data, which takes into consideration of clustering among failure times. In particular, we propose using the generalized estimating equations (GEE) or a linear mixed-effects model to implement the second step. Through simulation studies our proposal compares favorably to the independence approach (Lee et al., 1993), which ignores the within-cluster correlation in estimating the regression coefficient. Our proposal is easy to implement by using existing softwares.

摘要

我们将魏和坦纳(1991年)用于单变量删失数据的半参数线性回归中的多重插补方法扩展到聚类删失数据。主要思想是迭代以下两个步骤:1)使用数据扩充来插补删失的失效时间;2)对插补后的完整数据拟合线性模型,该模型考虑了失效时间之间的聚类情况。特别地,我们建议使用广义估计方程(GEE)或线性混合效应模型来执行第二步。通过模拟研究,我们的方法与独立性方法(李等人,1993年)相比具有优势,后者在估计回归系数时忽略了聚类内的相关性。我们的方法通过使用现有软件很容易实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验