Malajovich I, Berry J J, Samarth N, Awschalom D D
Department of Physics, University of California, Santa Barbara 93106, USA.
Nature. 2001 Jun 14;411(6839):770-2. doi: 10.1038/35081014.
Recent studies of n-type semiconductors have demonstrated spin-coherent transport over macroscopic distances, with spin-coherence times exceeding 100 ns; such materials are therefore potentially useful building blocks for spin-polarized electronics ('spintronics'). Spin injection into a semiconductor (a necessary step for spin electronics) has proved difficult; the only successful approach involves classical injection of spins from magnetic semiconductors. Other work has shown that optical excitation can provide a short (<500 ps) non-equilibrium burst of coherent spin transfer across a GaAs/ZnSe interface, but less than 10% of the total spin crosses into the ZnSe layer, leaving long-lived spins trapped in the GaAs layer (ref. 9). Here we report a 'persistent' spin-conduction mode in biased semiconductor heterostructures, in which the sourcing of coherent spin transfer lasts at least 1-2 orders of magnitude longer than in unbiased structures. We use time-resolved Kerr spectroscopy to distinguish several parallel channels of interlayer spin-coherent injection. The relative increase in spin-coherent injection is up to 500% in the biased structures, and up to 4,000% when p-n junctions are used to impose a built-in bias. These experiments reveal promising opportunities for multifunctional spin electronic devices (such as spin transistors that combine memory and logic functions), in which the amplitude and phase of the net spin current are controlled by either electrical or magnetic fields.
最近对n型半导体的研究表明,自旋相干输运可在宏观距离上实现,自旋相干时间超过100纳秒;因此,这类材料有望成为自旋极化电子学(“自旋电子学”)的有用构建模块。事实证明,将自旋注入半导体(自旋电子学的一个必要步骤)颇具难度;唯一成功的方法是从磁性半导体进行经典的自旋注入。其他研究表明,光激发可以在GaAs/ZnSe界面上提供短时间(<500皮秒)的非平衡相干自旋转移脉冲,但总自旋中只有不到10%进入ZnSe层,使得长寿命自旋被困在GaAs层中(参考文献9)。在此,我们报告了一种存在于偏置半导体异质结构中的“持续”自旋传导模式,其中相干自旋转移的来源持续时间比无偏置结构至少长1至2个数量级。我们使用时间分辨克尔光谱来区分层间自旋相干注入的几个平行通道。在偏置结构中,自旋相干注入的相对增加高达500%,而当使用p-n结施加内建偏置时,这一增加高达4000%。这些实验揭示了多功能自旋电子器件(如兼具存储和逻辑功能的自旋晶体管)所具有的广阔前景,在这类器件中,净自旋电流的幅度和相位可通过电场或磁场进行控制。