Kato Y, Myers R C, Gossard A C, Awschalom D D
Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA.
Nature. 2004 Jan 1;427(6969):50-3. doi: 10.1038/nature02202.
A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz.
相对论的一个结果是,在存在电场的情况下,电子的自旋和动量状态可以耦合;这被称为自旋 - 轨道耦合。这种相互作用在没有外加磁场的情况下,为在非磁性半导体中操纵电子自旋开辟了一条途径。这种相互作用对基于自旋的量子信息处理和自旋电子学有影响,构成了各种器件方案的基础。例如,自旋场效应晶体管的概念就是基于自旋 - 轨道耦合引起的自旋进动。然而,大多数研究集中在量子结构中的非自旋选择性电学测量上。在此,我们报告了在零磁场中,当电子响应外加电场漂移时,对相干电子自旋进动的直接测量。我们使用超快光学技术在时空上解析应变砷化镓和铟镓砷外延层中的自旋动力学。出乎意料的是,我们在这些简单结构中观察到由半导体薄膜中的应变引起的自旋分裂。所观察到的效应为利用应变工程实现对电子自旋的电控制提供了一种灵活的方法。此外,我们利用这种应变诱导场以高达约30 MHz的拉比频率电驱动自旋共振。