Kota V K, Sahu R
Physical Research Laboratory, Ahmedabad 380 009, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 2):016219. doi: 10.1103/PhysRevE.64.016219. Epub 2001 Jun 25.
Random matrix ensembles defined by a mean-field one body plus a chaos generating random two-body interaction [called embedded ensembles of (1+2)-body interactions] predict for wave functions, in the chaotic domain, an essentially one-parameter Gaussian forms for the energy dependence of the number of principal components (NPC) and the localization length l(H) (defined by information entropy), which are two important measures of chaos in finite interacting many-particle systems. Numerical embedded ensemble calculations and nuclear shell-model results, for NPC and l(H), are compared with the theory. These analyses clearly point out that for realistic finite interacting many-particle systems, in the chaotic domain, wave-function structure is given by (1+2)-body embedded random matrix ensembles.
由平均场单体加产生混沌的随机两体相互作用定义的随机矩阵系综(称为(1 + 2)体相互作用的嵌入系综)预测,在混沌域中,波函数的主成分数(NPC)的能量依赖性以及局域长度l(H)(由信息熵定义)具有本质上的单参数高斯形式,这是有限相互作用多粒子系统中混沌的两个重要度量。将关于NPC和l(H)的数值嵌入系综计算与核壳模型结果与该理论进行了比较。这些分析清楚地指出,对于现实的有限相互作用多粒子系统,在混沌域中,波函数结构由(1 + 2)体嵌入随机矩阵系综给出。