Kota V K B, Sahu R
Physical Research Laboratory, Ahmedabad 380 009, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2B):037103. doi: 10.1103/PhysRevE.66.037103. Epub 2002 Sep 24.
Random matrix ensembles defined by a mean-field one-body plus a chaos generating random two-body interaction (called embedded Gaussian orthogonal ensembles of (1+2)-body interactions[EGOE(1+2)]) predict for the entropy defined by the occupation numbers of single-particle states, in the chaotic domain, an essentially one parameter Gaussian form for their energy dependence. Numerical embedded ensemble calculations are compared with the theory. In addition, it is shown that the single-particle entropy, thermodynamic entropy defined by the state density and information entropy defined by wave functions in the mean-field basis for EGOE(1+2) describe the results known for interacting Fermi systems such as those obtained from nuclear shell model.
由平均场单体加一个产生混沌的随机两体相互作用定义的随机矩阵系综(称为(1 + 2)体相互作用的嵌入高斯正交系综[EGOE(1 + 2)]),对于由单粒子态占据数定义的熵,在混沌区域预测其能量依赖性具有本质上的单参数高斯形式。将数值嵌入系综计算与理论进行了比较。此外,结果表明,对于EGOE(1 + 2),单粒子熵、由态密度定义的热力学熵以及在平均场基中由波函数定义的信息熵,描述了诸如从核壳模型获得的相互作用费米系统的已知结果。