Diner B A, Schlodder E, Nixon P J, Coleman W J, Rappaport F, Lavergne J, Vermaas W F, Chisholm D A
CR & D, Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173, USA.
Biochemistry. 2001 Aug 7;40(31):9265-81. doi: 10.1021/bi010121r.
Site-directed mutations were introduced to replace D1-His198 and D2-His197 of the D1 and D2 polypeptides, respectively, of the photosystem II (PSII) reaction center of Synechocystis PCC 6803. These residues coordinate chlorophylls P(A) and P(B) which are homologous to the special pair Bchlorophylls of the bacterial reaction centers that are coordinated respectively by histidines L-173 and M-200 (202). P(A) and P(B) together serve as the primary electron donor, P, in purple bacterial reaction centers. In PS II, the site-directed mutations at D1 His198 affect the P(+)--P-absorbance difference spectrum. The bleaching maximum in the Soret region (in WT at 433 nm) is blue-shifted by as much as 3 nm. In the D1 His198Gln mutant, a similar displacement to the blue is observed for the bleaching maximum in the Q(y) region (672.5 nm in WT at 80 K), whereas features attributed to a band shift centered at 681 nm are not altered. In the Y(Z*)--Y(Z)-difference spectrum, the band shift of a reaction center chlorophyll centered in WT at 433--434 nm is shifted by 2--3 nm to the blue in the D1-His198Gln mutant. The D1-His198Gln mutation has little effect on the optical difference spectrum, (3)P--(1)P, of the reaction center triplet formed by P(+)Pheo(-) charge recombination (bleaching at 681--684 nm), measured at 5--80 K, but becomes visible as a pronounced shoulder at 669 nm at temperatures > or =150 K. Measurements of the kinetics of oxidized donor--Q(A)(-) charge recombination and of the reduction of P(+) by redox active tyrosine, Y(Z), indicate that the reduction potential of the redox couple P(+)/P can be appreciably modulated both positively and negatively by ligand replacement at D1-198 but somewhat less so at D2-197. On the basis of these observations and others in the literature, we propose that the monomeric accessory chlorophyll, B(A), is a long-wavelength trap located at 684 nm at 5 K. B(A)* initiates primary charge separation at low temperature, a function that is increasingly shared with P(A)* in an activated process as the temperature rises. Charge separation from B(A)* would be potentially very fast and form P(A)(+)B(A)(-) and/or B(A)(+)Pheo(-) as observed in bacterial reaction centers upon direct excitation of B(A) (van Brederode, M. E., et al. (1999) Proc. Natl. Acad Sci. 96, 2054--2059). The cation, generated upon primary charge separation in PSII, is stabilized at all temperatures primarily on P(A), the absorbance spectrum of which is displaced to the blue by the mutations. In WT, the cation is proposed to be shared to a minor extent (approximately 20%) with P(B), the contribution of which can be modulated up or down by mutation. The band shift at 681 nm, observed in the P(+)-P difference spectrum, is attributed to an electrochromic effect of P(A)(+) on neighboring B(A). Because of its low-energy singlet and therefore triplet state, the reaction center triplet state is stabilized on B(A) at < or =80 K but can be shared with P(A) at >80 K in a thermally activated process.
定点突变被引入,以分别替换集胞藻PCC 6803光系统II(PSII)反应中心D1和D2多肽中的D1-His198和D2-His197。这些残基配位叶绿素P(A)和P(B),它们与细菌反应中心的特殊对叶绿素B同源,细菌反应中心的特殊对叶绿素B分别由组氨酸L-173和M-200配位(202)。在紫色细菌反应中心,P(A)和P(B)共同作为初级电子供体P。在PS II中,D1 His198处的定点突变影响P(+)--P吸收差异光谱。Soret区域的漂白最大值(野生型中为433 nm)蓝移多达3 nm。在D1 His198Gln突变体中,Q(y)区域的漂白最大值(80 K时野生型中为672.5 nm)也观察到类似的蓝移,而以681 nm为中心的带移特征未改变。在Y(Z*)--Y(Z)差异光谱中,野生型中以433--434 nm为中心的反应中心叶绿素的带移在D1-His198Gln突变体中蓝移2--3 nm。D1-His198Gln突变对通过P(+)Pheo(-)电荷复合形成的反应中心三重态的光学差异光谱(3)P--(1)P影响很小(在5--80 K下测量,681--684 nm处漂白),但在温度≥150 K时,在669 nm处可见明显的肩峰。氧化供体--Q(A)(-)电荷复合动力学以及氧化还原活性酪氨酸Y(Z)对P(+)的还原测量表明,氧化还原对P(+)/P的还原电位可通过D1-198处的配体替换进行明显的正向和负向调节,但在D2-197处调节程度稍小。基于这些观察结果以及文献中的其他结果,我们提出单体辅助叶绿素B(A)是一个位于5 K时684 nm处的长波长陷阱。B(A)*在低温下启动初级电荷分离,随着温度升高,在一个活化过程中,该功能越来越多地与P(A)*共享。如在细菌反应中心中直接激发B(A)时观察到的那样,来自B(A)*的电荷分离可能非常快,并形成P(A)(+)B(A)(-)和/或B(A)(+)Pheo(-)(van Brederode, M. E.,等人(1999年)《美国国家科学院院刊》96, 2054--2059)。PSII中初级电荷分离产生的阳离子在所有温度下主要稳定在P(A)上,其吸收光谱因突变而蓝移。在野生型中,阳离子被认为在较小程度上(约20%)与P(B)共享,其贡献可通过突变上调或下调。在P(+)-P差异光谱中观察到的681 nm处的带移归因于P(A)(+)对相邻B(A)的电致变色效应。由于其低能单重态以及因此的三重态,反应中心三重态在≤80 K时稳定在B(A)上,但在>80 K时可通过热活化过程与P(A)共享。