Saito Keisuke, Mino Hiroyuki, Nishio Shunya, Ishikita Hiroshi
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
PNAS Nexus. 2022 Oct 3;1(5):pgac221. doi: 10.1093/pnasnexus/pgac221. eCollection 2022 Nov.
In photosystem II (PSII), one-electron oxidation of the most stable state of the oxygen-evolving MnCaO cluster (S) leads to the S state formation, Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (open-cubane S) or Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (closed-cubane S). In electron paramagnetic resonance (EPR) spectroscopy, the = 4.1 signal is not observed in cyanobacterial PSII but in plant PSII, whereas the = 4.8 signal is observed in cyanobacterial PSII and extrinsic-subunit-depleted plant PSII. Here, we investigated the closed-cubane S conformation, a candidate for a higher spin configuration that accounts for > 4.1 EPR signal, considering all pairwise exchange couplings in the PSII protein environment (i.e. instead of considering only a single exchange coupling between the [Mn(CaO)] cubane region and the dangling Mn4 site). Only when a ligand water molecule that forms an H-bond with D1-Asp61 (W1) is deprotonated at dangling Mn4(IV), the = 4.1 EPR spectra can be reproduced using the cyanobacterial PSII crystal structure. The closed-cubane S is less stable than the open-cubane S in cyanobacterial PSII, which may explain why the = 4.1 EPR signal is absent in cyanobacterial PSII.
在光系统II(PSII)中,放氧的MnCaO簇(S)最稳定状态的单电子氧化导致S态形成,即Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV)(开放立方烷S)或Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III)(封闭立方烷S)。在电子顺磁共振(EPR)光谱中,在蓝藻PSII中未观察到g = 4.1的信号,而在植物PSII中观察到了该信号,而g = 4.8的信号在蓝藻PSII和去除了外在亚基的植物PSII中均能观察到。在此,我们研究了封闭立方烷S构象,它是一种更高自旋构型的候选结构,该构型可解释g > 4.1的EPR信号,我们考虑了PSII蛋白质环境中的所有成对交换耦合(即不是仅考虑[Mn(CaO)]立方烷区域与悬空的Mn4位点之间的单个交换耦合)。只有当与D1-Asp61(W1)形成氢键的配体水分子在悬空的Mn4(IV)处去质子化时,才能使用蓝藻PSII晶体结构重现g = 4.1的EPR光谱。在蓝藻PSII中,封闭立方烷S比开放立方烷S稳定性更低,这可能解释了为什么在蓝藻PSII中不存在g = 4.1的EPR信号。