N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):44-50. doi: 10.1016/j.jphotobiol.2011.02.003. Epub 2011 Mar 5.
Low temperature (77-90 K) measurements of absorption spectral changes induced by red light illumination in isolated photosystem II (PSII) reaction centers (RCs, D1/D2/Cyt b559 complex) with different external acceptors and in PSII core complexes have shown that two different electron donors can alternatively function in PSII: chlorophyll (Chl) dimer P(680) absorbing at 684 nm and Chl monomer Chl(D1) absorbing at 674 nm. Under physiological conditions (278 K) transient absorption difference spectroscopy with 20-fs resolution was applied to study primary charge separation in spinach PSII core complexes excited at 710 nm. It was shown that the initial electron transfer reaction takes place with a time constant of ~0.9 ps. This kinetics was ascribed to charge separation between P(680)* and Chl(D1) absorbing at 670 nm accompanied by the formation of the primary charge-separated state P(680)(+)Chl(DI)(-), as indicated by 0.9-ps transient bleaching at 670 nm. The subsequent electron transfer from Chl(D1)(-) occurred within 13-14 ps and was accompanied by relaxation of the 670-nm band, bleaching of the Pheo(D1) Q(x) absorption band at 545 nm, and development of the anion-radical band of Pheo(D1)(-) at 450-460 nm, the latter two attributable to formation of the secondary radical pair P(680)(+)Pheo(D1)(-). The 14-ps relaxation of the 670-nm band was previously assigned to the Chl(D1) absorption in isolated PSII RCs [Shelaev, Gostev, Nadtochenko, Shkuropatov, Zabelin, Mamedov, Semenov, Sarkisov and Shuvalov, Photosynth. Res. 98 (2008) 95-103]. We suggest that the longer wavelength position of P(680) (near 680 nm) as a primary electron donor and the shorter wavelength position of Chl(D1) (near 670 nm) as a primary acceptor within the Q(y) transitions in RC allow an effective competition with an energy transfer and stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as the primary electron donor and Pheo(D1) as the primary acceptor cannot be ruled out, the 20-fs excitation at the far-red tail of the PSII core complex absorption spectrum at 710 nm appears to induce a transition to a low-energy state P(680)* with charge-transfer character (probably P(D1)(δ+)P(D2)(δ-)) which results in an effective electron transfer from P(680)* (the primary electron donor) to Chl(D1) as the intermediary acceptor.
在不同外部受体存在的情况下,对低温(77-90 K)下分离的光系统 II(PSII)反应中心(RC)(D1/D2/Cyt b559 复合物)中红光照射诱导的吸收光谱变化进行测量,以及在 PSII 核心复合物中,结果表明,两个不同的电子供体可以在 PSII 中交替作用:吸收波长为 684nm 的叶绿素(Chl)二聚体 P(680)和吸收波长为 674nm 的 Chl 单体 Chl(D1)。在生理条件下(278K),应用具有 20fs 分辨率的瞬态吸收差光谱法研究了在 710nm 激发下菠菜 PSII 核心复合物中的初级电荷分离。结果表明,初始电子转移反应发生在~0.9ps 的时间常数内。这种动力学归因于 P(680)和吸收波长为 670nm 的 Chl(D1)之间的电荷分离,同时伴随着形成初级电荷分离态 P(680)(+)Chl(DI)(-),这可以通过 670nm 处的 0.9-ps 瞬态漂白来指示。随后,Chl(D1)(-)中的电子转移在 13-14ps 内发生,伴随着 670nm 带的弛豫、545nm 处 Pheo(D1)Q(x)吸收带的漂白以及 450-460nm 处 Pheo(D1)(-)的阴离子自由基带的发展,后两者归因于形成二级自由基对 P(680)(+)Pheo(D1)(-)。以前,670nm 带的 14ps 弛豫被分配给在孤立 PSII RC 中的 Chl(D1)吸收[Shelaev、Gostev、Nadtochenko、Shkuropatov、Zabelin、Mamedov、Semenenov、Sarkisov 和 Shuvalov,Photosynth.Res.98(2008)95-103]。我们认为,在 RC 中的 Q(y)跃迁中,P(680)(靠近 680nm)作为初级电子供体的较长波长位置和 Chl(D1)(靠近 670nm)作为初级受体的较短波长位置允许与能量转移和分离电荷的稳定进行有效竞争。尽管不能排除 Chl(D1)作为初级电子供体和 Pheo(D1)作为初级受体的替代电荷分离机制,但在 710nm 处 PSII 核心复合物吸收光谱的远红外尾部进行 20fs 的激发,似乎会诱导到具有电荷转移特征的低能量态 P(680)(可能是 P(D1)(δ+)P(D2)(δ-)),这导致从 P(680)(初级电子供体)到 Chl(D1)的有效电子转移作为中间受体。