Suppr超能文献

半导体表面的“蘸笔”纳米光刻技术。

"Dip-Pen" nanolithography on semiconductor surfaces.

作者信息

Ivanisevic A, Mirkin C A

机构信息

Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

出版信息

J Am Chem Soc. 2001 Aug 15;123(32):7887-9. doi: 10.1021/ja010671c.

Abstract

Dip-Pen Nanolithography (DPN) uses an AFM tip to deposit organic molecules through a meniscus onto an underlying substrate under ambient conditions. Thus far, the methodology has been developed exclusively for gold using alkyl or aryl thiols as inks. This study describes the first application of DPN to write organic patterns with sub-100 nm dimensions directly onto two different semiconductor surfaces: silicon and gallium arsenide. Using hexamethyldisilazane (HMDS) as the ink in the DPN procedure, we were able to utilize lateral force microscopy (LFM) images to differentiate between oxidized semiconductor surfaces and patterned areas with deposited monolayers of HMDS. The choice of the silazane ink is a critical component of the process since adsorbates such as trichlorosilanes are incompatible with the water meniscus and polymerize during ink deposition. This work provides insight into additional factors, such as temperature and adsorbate reactivity, that control the rate of the DPN process and paves the way for researchers to interface organic and biological structures generated via DPN with electronically important semiconductor substrates.

摘要

蘸笔纳米光刻技术(DPN)利用原子力显微镜(AFM)针尖,在环境条件下通过弯月面将有机分子沉积到下层基板上。到目前为止,该方法仅用于在金表面使用烷基或芳基硫醇作为墨水进行光刻。本研究描述了首次将DPN应用于直接在两种不同的半导体表面(硅和砷化镓)上写入尺寸小于100纳米的有机图案。在DPN过程中使用六甲基二硅氮烷(HMDS)作为墨水,我们能够利用侧向力显微镜(LFM)图像区分氧化的半导体表面和沉积有HMDS单层的图案区域。硅氮烷墨水的选择是该工艺的关键组成部分,因为诸如三氯硅烷等吸附物与水弯月面不相容,并且在墨水沉积过程中会聚合。这项工作深入了解了控制DPN过程速率的其他因素,如温度和吸附物反应性,为研究人员将通过DPN生成的有机和生物结构与具有重要电子功能的半导体基板连接铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验