Suppr超能文献

用于定向自组装的微米和纳米级深紫外光诱导化学图案化

Deep-UV photoinduced chemical patterning at the micro- and nanoscale for directed self-assembly.

作者信息

Leuschel Benjamin, Gwiazda Agnieszka, Heni Wajdi, Diot Frédéric, Yu Shang-Yu, Bidaud Clémentine, Vonna Laurent, Ponche Arnaud, Haidara Hamidou, Soppera Olivier

机构信息

Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057, Mulhouse, France.

出版信息

Sci Rep. 2018 Jul 11;8(1):10444. doi: 10.1038/s41598-018-28196-1.

Abstract

Deep-UV (DUV) laser patterning has been widely used in recent years for micro- and nanopatterning, taking advantage of the specific properties of irradiation with high-energy photons. In this paper, we show the usefulness of DUV laser patterning for preparing surfaces with controlled chemical properties at the micro- and nanoscale. Our motivation was to develop a simple and versatile method for chemical patterning at multiscales (from mm to nm) over relatively wide areas (mm to cm). The chemical properties were provided by self-assembled monolayers (SAMs), prepared on glass or silicon wafers. We first investigated their modification under our irradiation conditions (ArF laser) using AFM, XPS and contact angle measurements. Photopatterning was then demonstrated with minimum feature sizes as small as 75 nm, and we showed the possibility to regraft a second SAM on the irradiated regions. Finally, we used these chemically patterned surfaces for directed self-assembly of several types of objects, such as block copolymers, sol-gel materials and liquids by vapor condensation.

摘要

近年来,深紫外(DUV)激光图案化技术利用高能光子辐照的特殊性质,在微纳图案化领域得到了广泛应用。在本文中,我们展示了DUV激光图案化技术在制备具有可控化学性质的微纳尺度表面方面的实用性。我们的动机是开发一种简单且通用的方法,用于在相对较大的区域(毫米到厘米)内进行多尺度(从毫米到纳米)的化学图案化。化学性质由在玻璃或硅片上制备的自组装单分子层(SAMs)提供。我们首先使用原子力显微镜(AFM)、X射线光电子能谱(XPS)和接触角测量方法,研究了在我们的辐照条件下(ArF激光)它们的改性情况。然后展示了最小特征尺寸小至75纳米的光图案化,并证明了在辐照区域重新接枝第二种SAM的可能性。最后,我们将这些化学图案化表面用于几种类型物体的定向自组装,如通过气相冷凝实现嵌段共聚物、溶胶 - 凝胶材料和液体的定向自组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/503a/6041335/24788d6061b9/41598_2018_28196_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验