Suppr超能文献

离散涡旋孤子

Discrete vortex solitons.

作者信息

Malomed B A, Kevrekidis P G

机构信息

Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026601. doi: 10.1103/PhysRevE.64.026601. Epub 2001 Jul 10.

Abstract

Localized states in the discrete two-dimensional (2D) nonlinear Schrödinger equation is found: vortex solitons with an integer vorticity S. While Hamiltonian lattices do not conserve angular momentum or the topological invariant related to it, we demonstrate that the soliton's vorticity may be conserved as a dynamical invariant. Linear stability analysis and direct simulations concur in showing that fundamental vortex solitons, with S=1, are stable if the intersite coupling C is smaller than some critical value C((1))(cr). At C>C((1))(cr), an instability sets in through a quartet of complex eigenvalues appearing in the linearized equations. Direct simulations reveal that an unstable vortex soliton with S=1 first splits into two usual solitons with S=0 (in accordance with the prediction of the linear analysis), but then an instability-induced spontaneous symmetry breaking takes place: one of the secondary solitons with S=0 decays into radiation, while the other one survives. We demonstrate that the usual (S=0) 2D solitons in the model become unstable, at C>C((0))(cr) approximately 2.46C((1))(cr), in a different way, via a pair of imaginary eigenvalues omega which bifurcate into instability through omega=0. Except for the lower-energy S=1 solitons that are centered on a site, we also construct ones which are centered between lattice sites which, however, have higher energy than the former. Vortex solitons with S=2 are found too, but they are always unstable. Solitons with S=1 and S=0 can form stable bound states.

摘要

在离散二维非线性薛定谔方程中发现了局域态

具有整数涡量(S)的涡旋孤子。虽然哈密顿晶格不守恒角动量或与之相关的拓扑不变量,但我们证明孤子的涡量可以作为动力学不变量守恒。线性稳定性分析和直接模拟都表明,当格点间耦合(C)小于某个临界值(C_{(1)}(cr))时,具有(S = 1)的基本涡旋孤子是稳定的。当(C > C_{(1)}(cr))时,线性化方程中出现的一组四重复特征值会引发不稳定性。直接模拟表明,具有(S = 1)的不稳定涡旋孤子首先分裂为两个具有(S = 0)的普通孤子(与线性分析的预测一致),但随后会发生由不稳定性引起的自发对称性破缺:其中一个具有(S = 0)的次级孤子衰变为辐射,而另一个则幸存下来。我们证明,在该模型中,通常的((S = 0))二维孤子在(C > C_{(0)}(cr)\approx2.46C_{(1)}(cr))时,会通过一对虚特征值(\omega)以不同方式变得不稳定,这些特征值通过(\omega = 0)分岔为不稳定性。除了以格点为中心的低能量(S = 1)孤子外,我们还构造了以格点间为中心的孤子,不过它们的能量比前者更高。也发现了具有(S = 2)的涡旋孤子,但它们总是不稳定的。具有(S = 1)和(S = 0)的孤子可以形成稳定的束缚态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验