Leblond Hervé, Malomed Boris A, Mihalache Dumitru
Laboratoire POMA, UMR 6136, Université d'Angers, 2 Bd Lavoisier, 49000 Angers, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026604. doi: 10.1103/PhysRevE.76.026604. Epub 2007 Aug 17.
We consider the three-dimensional (3D) Gross-Pitaevskii or nonlinear Schrödinger equation with a quasi-2D square-lattice potential (which corresponds to the optical lattice trapping a self-attractive Bose-Einstein condensate, or, in some approximation, to a photonic-crystal fiber, in terms of nonlinear optics). Stable 3D solitons, with embedded vorticity S=1 and 2, are found by means of the variational approximation and in a numerical form. They are built, basically, as sets of four fundamental solitons forming a rhombus, with phase shifts piS2 between adjacent sites, and an empty site in the middle. The results demonstrate two species of stable 3D solitons, which were not studied before, viz., localized vortices ("spinning light bullets," in terms of optics) with S>1 , and vortex solitons (with any S not equal 0 ) supported by a lattice in the 3D space. Typical scenarios of instability development (collapse or decay) of unstable localized vortices are identified too.
我们考虑具有准二维方格势的三维(3D)格罗斯 - 皮塔耶夫斯基方程或非线性薛定谔方程(就非线性光学而言,这对应于捕获自吸引玻色 - 爱因斯坦凝聚体的光学晶格,或者在某种近似下对应于光子晶体光纤)。通过变分近似并以数值形式找到了具有嵌入涡度S = 1和2的稳定三维孤子。它们基本上是由四个基本孤子组成的集合,这些孤子形成一个菱形,相邻位点之间有相移πS / 2,中间有一个空位。结果展示了两种以前未研究过的稳定三维孤子,即S>1的局域涡旋(就光学而言为“旋转光子弹”)以及由三维空间中的晶格支持的涡旋孤子(S不为0)。还确定了不稳定局域涡旋的典型不稳定性发展情况(坍缩或衰变)。