Kevrekidis P G, Malomed Boris A, Chen Zhigang, Frantzeskakis D J
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056612. doi: 10.1103/PhysRevE.70.056612. Epub 2004 Nov 18.
Vortex solitons with the topological charge S=3 , and "quasivortex" (multipole) solitons, which exist instead of the vortices with S=2 and 4, are constructed on a square lattice in the discrete nonlinear Schrödinger equation (true vortices with S=2 were known before, but they are unstable). For each type of solitary wave, its stability interval is found, in terms of the intersite coupling constant. The interval shrinks with increase of S . At couplings above a critical value, oscillatory instabilities set in, resulting in breakup of the vortex or quasivortex into lattice solitons with a lower vorticity. Such localized states may be observed in optical guiding structures, and in Bose-Einstein condensates loaded into optical lattices.
在离散非线性薛定谔方程的方形晶格上构建了拓扑电荷(S = 3)的涡旋孤子,以及存在于(S = 2)和(4)的涡旋位置上的“准涡旋”(多极)孤子(之前已知(S = 2)的真实涡旋,但它们是不稳定的)。对于每种类型的孤波,根据格点间耦合常数确定了其稳定区间。该区间随着(S)的增加而缩小。当耦合超过临界值时,会出现振荡不稳定性,导致涡旋或准涡旋分裂成具有较低涡度的晶格孤子。这种局域态可能在光学波导结构以及加载到光学晶格中的玻色 - 爱因斯坦凝聚体中被观测到。