Suppr超能文献

平动和转动运动对水溶液中分子缔合的贡献。

Contribution of translational and rotational motions to molecular association in aqueous solution.

作者信息

Yu Y B, Privalov P L, Hodges R S

机构信息

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Biophys J. 2001 Sep;81(3):1632-42. doi: 10.1016/S0006-3495(01)75817-1.

Abstract

Much uncertainty and controversy exist regarding the estimation of the enthalpy, entropy, and free energy of overall translational and rotational motions of solute molecules in aqueous solutions, quantities that are crucial to the understanding of molecular association/recognition processes and structure-based drug design. A critique of the literature on this topic is given that leads to a classification of the various views. The major stumbling block to experimentally determining the translational/rotational enthalpy and entropy is the elimination of vibrational perturbations from the measured effects. A solution to this problem, based on a combination of energy equi-partition and enthalpy-entropy compensation, is proposed and subjected to verification. This method is then applied to analyze experimental data on the dissociation/unfolding of dimeric proteins. For one translational/rotational unit at 1 M standard state in aqueous solution, the results for enthalpy (H degrees (tr)), entropy (S degrees (tr)), and free energy (G degrees (tr)) are H (degrees) (tr) = 4.5 +/- 1.5RT, S (degrees) (tr) = 5 +/- 4R, and G (degrees) (tr) = 0 +/- 5RT. Therefore, the overall translational and rotational motions make negligible contribution to binding affinity (free energy) in aqueous solutions at 1 M standard state.

摘要

关于水溶液中溶质分子整体平移和旋转运动的焓、熵和自由能的估计存在许多不确定性和争议,这些量对于理解分子缔合/识别过程和基于结构的药物设计至关重要。本文对该主题的文献进行了批判,从而对各种观点进行了分类。实验测定平移/旋转焓和熵的主要障碍是从测量效应中消除振动扰动。提出了一种基于能量均分和焓-熵补偿相结合的解决该问题的方法,并进行了验证。然后将该方法应用于分析二聚体蛋白质解离/展开的实验数据。对于水溶液中1 M标准状态下的一个平移/旋转单元,焓(H°(tr))、熵(S°(tr))和自由能(G°(tr))的结果为H°(tr)=4.5±1.5RT,S°(tr)=5±4R,G°(tr)=0±5RT。因此,在1 M标准状态的水溶液中,整体平移和旋转运动对结合亲和力(自由能)的贡献可忽略不计。

相似文献

1
Contribution of translational and rotational motions to molecular association in aqueous solution.
Biophys J. 2001 Sep;81(3):1632-42. doi: 10.1016/S0006-3495(01)75817-1.
2
A study on the enthalpy-entropy compensation in protein unfolding.
Biophys Chem. 2000 May 15;84(3):239-51. doi: 10.1016/s0301-4622(00)00130-7.
4
Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
J Phys Condens Matter. 2010 Jul 21;22(28):284108. doi: 10.1088/0953-8984/22/28/284108. Epub 2010 Jun 21.
7
Entropic cost of protein-ligand binding and its dependence on the entropy in solution.
J Phys Chem B. 2009 Apr 30;113(17):5871-84. doi: 10.1021/jp809968p.
8
Single water entropy: hydrophobic crossover and application to drug binding.
J Phys Chem B. 2014 Sep 11;118(36):10553-64. doi: 10.1021/jp502852f. Epub 2014 Aug 26.
9
Translational-entropy gain of solvent upon protein folding.
Biophys J. 2005 Oct;89(4):2701-10. doi: 10.1529/biophysj.104.057604. Epub 2005 Jul 29.
10
A theoretical analysis on characteristics of protein structures induced by cold denaturation.
J Chem Phys. 2009 Nov 28;131(20):205102. doi: 10.1063/1.3265985.

引用本文的文献

1
Binding Free Energy Calculations Based on the Path Collective Variable along a String Pathway.
J Phys Chem B. 2025 Jul 10;129(27):6805-6816. doi: 10.1021/acs.jpcb.5c02258. Epub 2025 Jun 30.
2
N-Heterocyclic Carbene Organocatalysis: With or Without Carbenes?
Chemistry. 2020 Aug 6;26(44):10140-10151. doi: 10.1002/chem.202002656. Epub 2020 Jul 23.
4
Crystal Structures of Diaryliodonium Fluorides and Their Implications for Fluorination Mechanisms.
Chemistry. 2017 Mar 28;23(18):4353-4363. doi: 10.1002/chem.201604803. Epub 2017 Mar 2.
5
Nucleation of mercury sulfide by dealkylation.
Sci Rep. 2016 Dec 19;6:39359. doi: 10.1038/srep39359.
6
Role of water in the formation of macromolecular structures.
Eur Biophys J. 2017 Apr;46(3):203-224. doi: 10.1007/s00249-016-1161-y. Epub 2016 Jul 25.
7
Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore.
J Comput Aided Mol Des. 2016 Jun;30(6):513-21. doi: 10.1007/s10822-016-9922-3. Epub 2016 Jul 8.
8
Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts.
Chemistry. 2016 Aug 22;22(35):12332-9. doi: 10.1002/chem.201600922. Epub 2016 Jun 15.
9
The energetic basis of the DNA double helix: a combined microcalorimetric approach.
Nucleic Acids Res. 2015 Sep 30;43(17):8577-89. doi: 10.1093/nar/gkv812. Epub 2015 Aug 24.
10
Detection and characterization of nonspecific, sparsely populated binding modes in the early stages of complexation.
J Comput Chem. 2015 May 15;36(13):983-95. doi: 10.1002/jcc.23883. Epub 2015 Mar 18.

本文引用的文献

3
How important are entropic contributions to enzyme catalysis?
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11899-904. doi: 10.1073/pnas.97.22.11899.
4
Comment on: 'The entropy cost of protein association'.
Protein Eng. 1999 Mar;12(3):185-6; discussion 187. doi: 10.1093/protein/12.3.185.
5
Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions.
Chem Biol. 1995 Nov;2(11):709-12. doi: 10.1016/1074-5521(95)90097-7.
6
The entropy cost of protein association.
J Mol Biol. 1997 Nov 14;273(5):1048-60. doi: 10.1006/jmbi.1997.1368.
8
The statistical-thermodynamic basis for computation of binding affinities: a critical review.
Biophys J. 1997 Mar;72(3):1047-69. doi: 10.1016/S0006-3495(97)78756-3.
9
Entropy in protein folding and in protein-protein interactions.
Curr Opin Struct Biol. 1997 Apr;7(2):215-21. doi: 10.1016/s0959-440x(97)80028-0.
10
Energetics of cyclic dipeptide crystal packing and solvation.
Biophys J. 1997 Feb;72(2 Pt 1):913-27. doi: 10.1016/s0006-3495(97)78725-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验