Suppr超能文献

头皮脑电图中癫痫发作起始的时间成分识别。

Identification of the temporal components of seizure onset in the scalp EEG.

作者信息

O'Neill N S, Javidan M, Koles Z J

机构信息

Department of Biomedical Engineering, University of Alberta, Edmonton, Canada.

出版信息

Can J Neurol Sci. 2001 Aug;28(3):245-53. doi: 10.1017/s0317167100001402.

Abstract

BACKGROUND

The identification of the earliest indication of rhythmical oscillations and paroxysmal events associated with an epileptic seizure is paramount in identifying the location of the seizure onset in the scalp EEG. In this work, data-dependent filters are designed that can help reveal obscure activity at the onset of seizures in problematic EEGs.

METHODS

Data-dependent filters were designed using temporal patterns common to selected segments from pre-ictal and ictal portions of the scalp EEG. Temporal patterns that accounted for more variance in the ictal segment than in the pre-ictal segment of the scalp EEG were used to form the filters.

RESULTS

Application of the filters to the scalp EEG revealed temporal components in the seizure onset in the scalp recording that were not obvious in the unfiltered EEG. Examination of the filtered EEG enabled the onset of the seizure to be recognized earlier in the recording. The utility of the filters was confirmed qualitatively by comparing the scalp recording to the intracranial recording and quantitatively by calculating correlation coefficients between the scalp and intracranial recordings before and after filtering.

CONCLUSION

The data-dependent approach to EEG filter design allows automatic detection of the basic frequencies present in the seizure onset. This approach is more effective than narrow band-pass filtering for eliminating artifactual and other interference that can obscure the onset of a seizure. Therefore, temporal-pattern filtering facilitates the identification of seizure onsets in challenging scalp EEGs.

摘要

背景

识别与癫痫发作相关的节律性振荡和阵发性事件的最早迹象,对于确定头皮脑电图中癫痫发作的起始位置至关重要。在这项研究中,设计了数据依赖滤波器,以帮助揭示疑难脑电图中癫痫发作起始时的模糊活动。

方法

利用头皮脑电图发作前期和发作期选定片段共有的时间模式设计数据依赖滤波器。使用在头皮脑电图发作期片段中比发作前期片段中解释更多方差的时间模式来形成滤波器。

结果

将滤波器应用于头皮脑电图,揭示了头皮记录中癫痫发作起始的时间成分,这些成分在未滤波的脑电图中并不明显。对滤波后的脑电图进行检查,能够在记录中更早地识别癫痫发作的起始。通过将头皮记录与颅内记录进行比较,定性地证实了滤波器的效用;通过计算滤波前后头皮记录与颅内记录之间的相关系数,定量地证实了滤波器的效用。

结论

基于数据的脑电图滤波器设计方法能够自动检测癫痫发作起始中存在的基本频率。这种方法在消除可能掩盖癫痫发作起始的人为干扰和其他干扰方面比窄带通滤波更有效。因此,时间模式滤波有助于在具有挑战性的头皮脑电图中识别癫痫发作起始。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验