Suppr超能文献

改善发作期头皮脑电图的解读:用于去除肌肉伪迹的BSS-CCA算法

Improving the interpretation of ictal scalp EEG: BSS-CCA algorithm for muscle artifact removal.

作者信息

Vergult Anneleen, De Clercq Wim, Palmini André, Vanrumste Bart, Dupont Patrick, Van Huffel Sabine, Van Paesschen Wim

机构信息

ESAT-SCD Electrical Engineering Department, Katholieke Universiteit Leuven, Belgium.

出版信息

Epilepsia. 2007 May;48(5):950-8. doi: 10.1111/j.1528-1167.2007.01031.x. Epub 2007 Mar 22.

Abstract

PURPOSE

To investigate the potential clinical relevance of a new algorithm to remove muscle artifacts in ictal scalp EEG.

METHODS

Thirty-seven patients with refractory partial epilepsy with a well-defined seizure onset zone based on full presurgical evaluation, including SISCOM but excluding ictal EEG findings, were included. One ictal EEG of each patient was presented to a clinical neurophysiologist who was blinded to all other data. Ictal EEGs were first rated after band-pass filtering, then after elimination of muscle artifacts using a blind source separation-canonical correlation analysis technique (BSS-CCA). Degree of muscle artifact contamination, lateralization, localization, time and pattern of ictal EEG onset were compared between the two readings and validated against the other localizing information.

RESULTS

Muscle artifacts contaminated 97% of ictal EEGs, and interfered with the interpretation in 76%, more often in extratemporal than temporal lobe seizures. BSS-CCA significantly improved the sensitivity to localize the seizure onset from 62% to 81%, and performed best in ictal EEGs with moderate to severe muscle artifact contamination. In a significant number of the contaminated EEGs, BSS-CCA also led to an earlier identification of ictal EEG changes, and recognition of ictal EEG patterns that were hidden by muscle artifact.

CONCLUSIONS

Muscle artifacts interfered with the interpretation in a majority of ictal EEGs. BSS-CCA reliably removed these muscle artifacts in a user-friendly manner. BSS-CCA may have an important place in the interpretation of ictal EEGs during presurgical evaluation of patients with refractory partial epilepsy.

摘要

目的

研究一种用于去除发作期头皮脑电图中肌肉伪迹的新算法的潜在临床相关性。

方法

纳入37例难治性部分性癫痫患者,这些患者在全面的术前评估(包括SISCOM,但不包括发作期脑电图结果)基础上有明确的发作起始区。将每位患者的一次发作期脑电图呈现给一位对所有其他数据不知情的临床神经生理学家。发作期脑电图首先在带通滤波后进行评分,然后使用盲源分离 - 典型相关分析技术(BSS - CCA)消除肌肉伪迹后再次评分。比较两次读数之间肌肉伪迹污染程度、发作期脑电图的定位、时间和发作模式,并与其他定位信息进行验证。

结果

肌肉伪迹污染了97%的发作期脑电图,并干扰了76%的脑电图解读,在颞叶外癫痫发作中比颞叶癫痫发作中更常见。BSS - CCA显著提高了定位发作起始的敏感性,从62%提高到81%,并且在中度至重度肌肉伪迹污染的发作期脑电图中表现最佳。在大量受污染的脑电图中,BSS - CCA还能更早地识别出发作期脑电图变化,并识别出被肌肉伪迹掩盖的发作期脑电图模式。

结论

肌肉伪迹干扰了大多数发作期脑电图的解读。BSS - CCA以用户友好的方式可靠地去除了这些肌肉伪迹。BSS - CCA在难治性部分性癫痫患者术前评估期间发作期脑电图的解读中可能具有重要地位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验