Suppr超能文献

对来自浅白假丝酵母的木糖还原酶催化的NADH依赖性醛还原机制的瞬态和稳态动力学研究。

Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.

作者信息

Nidetzky B, Klimacek M, Mayr P

机构信息

Division of Biochemical Engineering, Institute of Food Technology, Universität für Bodenkultur (BOKU), Muthgasse 18, A-1190 Vienna, Austria.

出版信息

Biochemistry. 2001 Aug 28;40(34):10371-81. doi: 10.1021/bi010148a.

Abstract

Microbial xylose reductase, a representative aldo-keto reductase of primary sugar metabolism, catalyzes the NAD(P)H-dependent reduction of D-xylose with a turnover number approximately 100 times that of human aldose reductase for the same reaction. To determine the mechanistic basis for that physiologically relevant difference and pinpoint features that are unique to the microbial enzyme among other aldo/keto reductases, we carried out stopped-flow studies with wild-type xylose reductase from the yeast Candida tenuis. Analysis of transient kinetic data for binding of NAD(+) and NADH, and reduction of D-xylose and oxidation of xylitol at pH 7.0 and 25 degrees C provided estimates of rate constants for the following mechanism: E + NADH right arrow over left arrow E.NADH right arrow over left arrow E.NADH + D-xylose right arrow over left arrow E.NADH.D-xylose right arrow over left arrow E.NAD(+).xylitol right arrow over left arrow E.NAD(+) right arrow over left arrow E.NAD(+) right arrow over left arrow E + NAD(+). The net rate constant of dissociation of NAD(+) is approximately 90% rate limiting for k(cat) of D-xylose reduction. It is controlled by the conformational change which precedes nucleotide release and whose rate constant of 40 s(-)(1) is 200 times that of completely rate-limiting E.NADP(+) --> E.NADP(+) step in aldehyde reduction catalyzed by human aldose reductase [Grimshaw, C. E., et al. (1995) Biochemistry 34, 14356-14365]. Hydride transfer from NADH occurs with a rate constant of approximately 170 s(-1). In reverse reaction, the E.NADH --> E.NADH step takes place with a rate constant of 15 s(-1), and the rate constant of ternary-complex interconversion (3.8 s(-1)) largely determines xylitol turnover (0.9 s(-1)). The bound-state equilibrium constant for C. tenuis xylose reductase is estimated to be approximately 45 (=170/3.8), thus greatly favoring aldehyde reduction. Formation of productive complexes, E.NAD(+) and E.NADH, leads to a 7- and 9-fold decrease of dissociation constants of initial binary complexes, respectively, demonstrating that 12-fold differential binding of NADH (K(i) = 16 microM) vs NAD(+) (K(i) = 195 microM) chiefly reflects difference in stabilities of E.NADH and E.NAD(+). Primary deuterium isotope effects on k(cat) and k(cat)/K(xylose) were, respectively, 1.55 +/- 0.09 and 2.09 +/- 0.31 in H(2)O, and 1.26 +/- 0.06 and 1.58 +/- 0.17 in D(2)O. No deuterium solvent isotope effect on k(cat)/K(xylose) was observed. When deuteration of coenzyme selectively slowed the hydride transfer step, (D)()2(O)(k(cat)/K(xylose)) was inverse (0.89 +/- 0.14). The isotope effect data suggest a chemical mechanism of carbonyl reduction by xylose reductase in which transfer of hydride ion is a partially rate-limiting step and precedes the proton-transfer step.

摘要

微生物木糖还原酶是初级糖代谢中一种典型的醛糖 - 酮糖还原酶,它催化依赖于NAD(P)H的D - 木糖还原反应,其转换数大约是人类醛糖还原酶催化相同反应时的100倍。为了确定这种生理相关差异的机制基础,并找出微生物酶在其他醛糖/酮糖还原酶中独有的特征,我们对来自酵母季也蒙毕赤酵母的野生型木糖还原酶进行了停流研究。在pH 7.0和25℃下,对NAD(+)和NADH的结合、D - 木糖的还原以及木糖醇的氧化的瞬态动力学数据进行分析,得出了以下机制的速率常数估计值:E + NADH ⇌ E·NADH ⇌ E·NADH + D - 木糖 ⇌ E·NADH·D - 木糖 ⇌ E·NAD(+)·木糖醇 ⇌ E·NAD(+) ⇌ E + NAD(+)。NAD(+)解离的净速率常数对D - 木糖还原的k(cat)来说约90%是限速的。它受核苷酸释放之前的构象变化控制,其速率常数为40 s⁻¹,是人类醛糖还原酶催化醛还原中完全限速的E·NADP(+) → E·NADP(+)步骤速率常数的200倍[Grimshaw, C. E., 等人(1995) Biochemistry 34, 14356 - 14365]。来自NADH的氢化物转移的速率常数约为170 s⁻¹。在逆向反应中,E·NADH → E·NADH步骤的速率常数为15 s⁻¹,三元复合物相互转化的速率常数(3.8 s⁻¹)在很大程度上决定了木糖醇的周转(0.9 s⁻¹)。季也蒙毕赤酵母木糖还原酶的结合态平衡常数估计约为45(=170/3.8),因此极大地有利于醛还原。生成活性复合物E·NAD(+)和E·NADH分别导致初始二元复合物解离常数降低7倍和9倍,这表明NADH(Ki = 16 μM)与NAD(+)(Ki = 195 μM)的12倍差异结合主要反映了E·NADH和E·NAD(+)稳定性的差异。在H₂O中,对k(cat)和k(cat)/K(木糖)的初级氘同位素效应分别为1.55 ± 0.09和2.09 ± 0.31,在D₂O中分别为1.26 ± 0.06和1.58 ± 0.17。未观察到氘溶剂同位素对k(cat)/K(木糖)的影响。当辅酶的氘化选择性地减慢氢化物转移步骤时,(D₂O)(k(cat)/K(木糖))是反向的(0.89 ± 0.14)。同位素效应数据表明木糖还原酶羰基还原的化学机制,其中氢化物离子的转移是部分限速步骤,且先于质子转移步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验