Asefa T, Kruk M, MacLachlan M J, Coombs N, Grondey H, Jaroniec M, Ozin G A
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
J Am Chem Soc. 2001 Sep 5;123(35):8520-30. doi: 10.1021/ja0037320.
A new class of bifunctional periodic mesoporous organosilicas (BPMOs) containing two differently bonded organic moieties in a mesoporous host has been synthesized and characterized. By incorporating bridge-bonded ethylene groups into the walls and terminally bonded vinyl groups protruding into the channel space, both the chemistry and physical properties of the resulting BPMO could be modified. The materials have periodic mesoporous structures in which the bridging ethylene plays a structural and mechanical role and the vinyl groups are readily accessible for chemical transformations. The vinyl groups in the material underwent hydroboration with BH(3).THF and the resulting organoborane in the BPMO was quantitatively transformed into an alcohol using either H(2)O(2)/NaOH or NaBO(3).4H(2)O. The materials retained ordered structures after subsequent in situ reactions with largely unchanged pore volumes, specific surface areas and pore size distributions. Other organic functionalized BPMO materials may be synthesized in a similar manner or by further functionalizing the resulting borylated or alcohol functionalized BPMO materials. The thermal properties of the BPMO materials have also been investigated and are compared to those of the periodic mesoporous organosilica (PMO) materials. Noteworthy thermal events concern intrachannel reactions between residual silanols or atmospheric oxygen and organics in BPMOs. They begin around 300 degrees C and smoothly interconvert bridging ethylene to terminal vinyl groups and terminal vinyl to gaseous ethene and ethane, ultimately producing periodic mesoporous silica at 900 degrees C that exhibits good structural order and a unit-cell size decreased relative to that of the parent BPMO.
一类新型的双功能周期性介孔有机硅(BPMO)已被合成与表征,其在介孔主体中含有两个不同键合的有机部分。通过将桥连的乙烯基团引入孔壁,并使末端键合的乙烯基突出到孔道空间中,所得BPMO的化学性质和物理性质均可得到改性。这些材料具有周期性介孔结构,其中桥连的乙烯起到结构和机械作用,而乙烯基易于进行化学转化。材料中的乙烯基与BH(3).THF发生硼氢化反应,然后使用H(2)O(2)/NaOH或NaBO(3).4H(2)O将所得BPMO中的有机硼烷定量转化为醇。在随后的原位反应后,材料保留了有序结构,其孔体积、比表面积和孔径分布基本不变。其他有机功能化的BPMO材料可以以类似的方式合成,或者通过对所得的硼化或醇功能化的BPMO材料进行进一步功能化来制备。还研究了BPMO材料的热性质,并与周期性介孔有机硅(PMO)材料的热性质进行了比较。值得注意的热事件涉及BPMO中残留硅醇或大气中的氧气与有机物之间的孔道内反应。这些反应在约300℃开始,桥连的乙烯平稳地转化为末端乙烯基,末端乙烯基转化为气态乙烯和乙烷,最终在900℃生成具有良好结构有序性且晶胞尺寸相对于母体BPMO减小的周期性介孔二氧化硅。