Suppr超能文献

生物衰老过程中的氧化应激与蛋白质聚集

Oxidative stress and protein aggregation during biological aging.

作者信息

Squier T C

机构信息

Department of Molecular Biosciences, Biochemistry and Biophysics Section, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045-7534, USA.

出版信息

Exp Gerontol. 2001 Sep;36(9):1539-50. doi: 10.1016/s0531-5565(01)00139-5.

Abstract

Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy metabolism through the selective oxidation or nitration of critical signal transduction proteins (i.e. CaM or SERCA) is thought to maintain cellular function by minimizing protein aggregation and amyloid formation. Age-dependent increases in the rate of ROS generation or declines in cellular repair or degradation mechanisms will increase the oxidative load on the cell, resulting in corresponding increases in the concentrations of oxidized proteins and the associated formation of amyloid.

摘要

生物衰老乃是一个基本过程,它是脊椎动物罹患癌症、神经退行性疾病以及心血管疾病的主要风险因素。因此,衰老的分子机制对于理解诸多疾病进程至关重要,这一点不言而喻。在这方面,细胞内蛋白质的氧化和硝化以及蛋白质聚集体的形成被认为是细胞功能丧失以及衰老动物耐受生理应激能力下降的基础。由于氧化修饰的蛋白质在热力学上不稳定,并呈现出易于形成聚集体的部分展开的三级结构,氧化的蛋白质很可能是淀粉样纤维形成过程中的中间体。因此,确定那些可能通过下调能量代谢以及随之产生的活性氧(ROS)而发挥保护作用的氧化敏感蛋白靶点颇具意义。在这方面,维持细胞钙梯度是一项主要的能量消耗,它通过呼吸控制机制将细胞内钙水平的改变与ATP利用以及相关的ROS产生联系起来。衰老过程中和氧化应激条件下体内发生的钙调节蛋白钙调蛋白和钙 - ATP酶的选择性氧化或硝化,可能代表了一种对氧化应激的适应性反应,其作用是下调能量代谢以及相关的ROS产生。由于这些钙调节蛋白在体外条件下也优先被氧化或硝化,这些结果表明这些关键的钙调节蛋白对氧化应激条件的敏感性增强,它们调节信号转导过程和细胞内能量代谢。因此,关键信号转导蛋白的选择性氧化可能代表一种调节机制,其作用是通过呼吸控制机制将ROS的产生降至最低。反过来,ROS产生速率的降低将在氧化应激条件下促进细胞存活,此时活性氧和氮物种超过细胞抗氧化防御系统,通过最大限度地减少一系列生物分子的非选择性氧化来实现。由于如果蛋白质修复和降解系统无法作用于氧化的蛋白质并恢复细胞功能,就会发生蛋白质聚集,通过下调电子传递链来减少细胞的氧化负荷,其作用是最大限度地减少蛋白质聚集。因此,ROS作为信号分子,通过对钙调节蛋白的选择性氧化或硝化来微调细胞代谢,以最大限度地减少广泛的氧化损伤和蛋白质聚集。细胞蛋白质的氧化损伤、钙稳态的丧失和蛋白质聚集促成了生物衰老过程中积累的淀粉样沉积物的形成。理解这些过程与生物衰老之间关系的关键在于确定调节能量利用和相关ROS产生的氧化敏感蛋白。在这后一方面,对钙调节蛋白钙调蛋白(CaM)和肌浆/内质网钙 - ATP酶(SERCA)的氧化修饰作用是下调ATP利用以及通过氧化磷酸化补充细胞内ATP相关的ROS产生。ROS产生速率的降低反过来将最大限度地减少蛋白质氧化,并促进细胞内修复和降解系统,这些系统的作用是消除受损和部分展开的蛋白质。由于蛋白质修复或降解的速率与蛋白质聚集的速率相互竞争,通过对关键信号转导蛋白(即CaM或SERCA)的选择性氧化或硝化来调节细胞内钙浓度和能量代谢,被认为通过最大限度地减少蛋白质聚集和淀粉样形成来维持细胞功能。随着年龄增长,ROS产生速率的增加或细胞修复或降解机制的下降将增加细胞的氧化负荷,导致氧化蛋白质浓度相应增加以及相关淀粉样物质的形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验