Grachev I D, Kumar R, Ramachandran T S, Szeverenyi N M
Department of Radiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
Mol Psychiatry. 2001 Sep;6(5):496, 529-39. doi: 10.1038/sj.mp.4000940.
The neurobiology of cognitive interference is unknown. Previous brain imaging studies using the Stroop Color-Word (SCW) task indicate involvement of the cingulate cortex cognitive division. The present study examines interrelationships between regional brain N-Acetyl aspartate (NAA) levels (as identified by in vivo proton magnetic resonance spectroscopy in the right and left anterior cingulate cortex (ACC), dorsolateral prefrontal cortex, orbitofrontal cortex and thalamus) and cognitive interference (as measured by the SCW task) in 15 normal subjects. The results show that brain chemistry depends on cognitive interference levels (high vs low). Reduction of NAA levels was demonstrated in the right ACC (ie, cognitive midsupracallosal division) of high interference subjects, as compared to the low interference group (P < 0.01, two-tailed t-test). Chemical-cognitive relationships were analyzed by calculating correlations between regional NAA levels and the SCW task scores. Cognitive interference was highly correlated with the right anterior cingulate NAA (r = 0.76, P < 0.001), and was unrelated to other studied regional NAA, including the left ACC (P < 0.025; comparing the difference between r values in the right and left ACC). The interrelationships between NAA across brain regions were examined using correlation analysis (square matrix correlation maps), which detected different connectivity patterns between the two groups. These findings provide evidence of ACC involvement in cognitive interference suggesting a possibility of neuronal reorganization in the physiological mechanism of interference (most likely due to genetically predetermined control of the number of neurons, dendrites and receptors, and their function). We conclude that spectroscopic brain mapping of NAA, the marker of neuronal density and function, to the SCW task measures differentiates between high and low interference in normal subjects. This neuroimaging/cognitive tool may be useful for documentation of interference in studying cognitive control mechanisms, and in diagnosis of neuropsychiatric disorders where dysfunction of cingulate cortex is expected.
认知干扰的神经生物学机制尚不清楚。以往使用斯特鲁普颜色-文字(SCW)任务的脑成像研究表明,扣带回皮质认知区参与其中。本研究调查了15名正常受试者大脑区域N-乙酰天门冬氨酸(NAA)水平(通过体内质子磁共振波谱在左右前扣带回皮质(ACC)、背外侧前额叶皮质、眶额皮质和丘脑测定)与认知干扰(通过SCW任务测量)之间的相互关系。结果显示,大脑化学组成取决于认知干扰水平(高与低)。与低干扰组相比,高干扰受试者右侧ACC(即认知胼胝体上中部)的NAA水平降低(P < 0.01,双侧t检验)。通过计算区域NAA水平与SCW任务得分之间的相关性来分析化学-认知关系。认知干扰与右侧前扣带回NAA高度相关(r = 0.76,P < 0.001),与其他研究的区域NAA无关,包括左侧ACC(P < 0.025;比较左右ACC的r值差异)。使用相关性分析(方阵相关图)检查了大脑区域间NAA的相互关系,该分析检测到两组之间不同的连接模式。这些发现提供了ACC参与认知干扰的证据,表明在干扰的生理机制中可能存在神经元重组(很可能是由于对神经元、树突和受体数量及其功能的基因预先控制)。我们得出结论,将作为神经元密度和功能标志物的NAA进行脑波谱映射到SCW任务测量中,可以区分正常受试者的高干扰和低干扰。这种神经成像/认知工具可能有助于记录认知控制机制研究中的干扰情况,以及诊断预期扣带回皮质功能障碍的神经精神疾病。