Suppr超能文献

Carbonate induced dissolution of uranium containing precipitates under cement leachate conditions.

作者信息

Sutton M, Warwick P, Hall A, Jones C

机构信息

Department of Chemistry, Loughborough University, Leicestershire, UK LE11 3TU.

出版信息

J Environ Monit. 1999 Apr;1(2):177-82. doi: 10.1039/a809262a.

Abstract

The effects of carbonate on uranium (VI) solubility under aerobic and cementitious conditions have been investigated. The information is of relevance to low level nuclear waste disposal. Aqueous NaOH, KOH, Ca(OH)2 and a cement leachate solution were added to uranyl nitrate solution. Afterwards, increasing amounts of ammonium carbonate were added to re-dissolve the precipitates. The precipitates were characterised by means of X-ray powder diffraction (XRPD) measurements and modelling studies. The model calculations were performed using the MINTEQA2 speciation code, with an expanded database incorporating uranium stability constants taken from the HATCHES database. The measured and predicted amounts of CO3(2-) needed to dissolve the precipitates were compared. The knowledge gained from the 'pure' systems was used to rationalise the precipitation and re-dissolution behaviour observed in the leachate system. The lack of uranium solubility at low carbonate levels brought into question literature formation constants for UO2(OH)3- and UO2(OH)4(2-). An approximate log K value of 26.8 for K2U2O7 formation was estimated from the KOH results at pH 12. Generally, uranium solubilities are expected to be insignificant at low level nuclear waste sites because anaerobic conditions should persist. However, this study has demonstrated that solubility in leachate could rise at high pH and high carbonate levels, if aerobic conditions were to develop. Soluble U(VI) species would be formed. The novel part of the study has been to reproduce the effects and to correlate enhanced solubilities with model predictions. Consequently, the study has re-emphasised the need for appropriate environmental monitoring of such sites.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验