Suppr超能文献

通过颜色反卷积对组织化学染色进行定量分析。

Quantification of histochemical staining by color deconvolution.

作者信息

Ruifrok A C, Johnston D A

机构信息

Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.

出版信息

Anal Quant Cytol Histol. 2001 Aug;23(4):291-9.

Abstract

OBJECTIVE

To develop a flexible method of separation and quantification of immunohistochemical staining by means of color image analysis.

STUDY DESIGN

An algorithm was developed to deconvolve the color information acquired with red-green-blue (RGB) cameras and to calculate the contribution of each of the applied stains based on stain-specific RGB absorption. The algorithm was tested using different combinations of diaminobenzidine, hematoxylin and eosin at different staining levels.

RESULTS

Quantification of the different stains was not significantly influenced by the combination of multiple stains in a single sample. The color deconvolution algorithm resulted in comparable quantification independent of the stain combinations as long as the histochemical procedures did not influence the amount of stain in the sample due to bleaching because of stain solubility and saturation of staining was prevented.

CONCLUSION

This image analysis algorithm provides a robust and flexible method for objective immunohistochemical analysis of samples stained with up to three different stains using a laboratory microscope, standard RGB camera setup and the public domain program NIH Image.

摘要

目的

通过彩色图像分析开发一种灵活的免疫组织化学染色分离与定量方法。

研究设计

开发了一种算法,用于解卷积由红-绿-蓝(RGB)相机获取的颜色信息,并根据特定染色剂的RGB吸收计算每种应用染色剂的贡献。使用二氨基联苯胺、苏木精和伊红在不同染色水平的不同组合对该算法进行了测试。

结果

单个样本中多种染色剂的组合对不同染色剂的定量没有显著影响。只要组织化学程序不会因染色剂溶解度导致的漂白而影响样本中的染色剂含量,并且防止了染色饱和,颜色解卷积算法就能产生与染色剂组合无关的可比定量结果。

结论

该图像分析算法提供了一种强大且灵活的方法,可使用实验室显微镜、标准RGB相机设置和公共领域程序NIH Image对用多达三种不同染色剂染色的样本进行客观的免疫组织化学分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验