Cronhjort M B
Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden.
Orig Life Evol Biosph. 1995 Jun;25(1-3):227-33. doi: 10.1007/BF01581586.
Spatial hypercycle systems can be modelled by means of cellular automata or partial differential equations. In either model, two dimensional spirals or clusters can be formed. Different models give rise to slightly different spatial structures, but the response to parasites is fundamentally different: In cellular automata the hypercycle is resistant to parasites that are fatal in a partial differential equations model. In three dimensions scroll rings correspond to the two dimensional spirals. Numerical simulations on a partial differential equations model indicate that the scroll rings are unstable: The contract by a power law and disappear. Therefore, in three dimensions clusters seem to be the best candidate for the hypercycle resistant to parasites.
空间超循环系统可以通过细胞自动机或偏微分方程来建模。在任何一种模型中,都可以形成二维螺旋或簇。不同的模型会产生略有不同的空间结构,但对寄生虫的反应却有根本的不同:在细胞自动机中,超循环对在偏微分方程模型中致命的寄生虫具有抗性。在三维空间中, scroll环对应于二维螺旋。偏微分方程模型的数值模拟表明,scroll环是不稳定的:它们按幂律收缩并消失。因此,在三维空间中,簇似乎是对寄生虫具有抗性的超循环的最佳候选者。