Suppr超能文献

疏水性理论:分子液体中的瞬时空穴

Theory of hydrophobicity: transient cavities in molecular liquids.

作者信息

Pratt L R, Pohorille A

机构信息

Los Alamos National Laboratory, NM 87545, USA.

出版信息

Proc Natl Acad Sci U S A. 1992 Apr;89(7):2995-9. doi: 10.1073/pnas.89.7.2995.

Abstract

Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

摘要

在台式条件下对水、正己烷和正十二烷进行计算机模拟时,对瞬态空穴尺寸分布的观察表明,空穴尺寸在液态水中定义更为清晰,但在这些液体中,最可能尺寸的空穴大小大致相同。计算得出的与这些空穴接触的溶剂原子密度表明,水在空穴表面单位面积上施加的力比烃类液体更大。这种接触密度,即“挤压”力,在空穴直径接近2.4埃时达到最大值。将液态水的结果与简单理论的预测进行了比较,此外还与一种参考简单液体的结果进行了比较。分析了一系列温度下水的数值数据,以提取原子尺寸空穴形成功的表面自由能贡献。与这里研究的模型液体的液-气界面张力进行比较表明,为原子尺寸空穴提取出的表面自由能无法准确等同于系统的宏观表面张力。

相似文献

1
Theory of hydrophobicity: transient cavities in molecular liquids.
Proc Natl Acad Sci U S A. 1992 Apr;89(7):2995-9. doi: 10.1073/pnas.89.7.2995.
2
Cavities in molecular liquids and the theory of hydrophobic solubilities.
J Am Chem Soc. 1990;112(13):5066-74. doi: 10.1021/ja00169a011.
5
Interactions of anesthetics with the water-hexane interface. A molecular dynamics study.
J Phys Chem B. 1997 Jan 30;101(5):782-91. doi: 10.1021/jp961513o.
6
Correlating solvation free energies and surface tensions of hydrocarbon solutes.
Biophys Chem. 1994 Aug;51(2-3):397-403; discussion 404-9. doi: 10.1016/0301-4622(94)00062-x.
7
Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules.
Biopolymers. 1991 Jul;31(8):993-1008. doi: 10.1002/bip.360310809.
8
9
Contrasting nonaqueous against aqueous solvation on the basis of scaled-particle theory.
J Phys Chem B. 2007 Aug 9;111(31):9330-6. doi: 10.1021/jp071969d. Epub 2007 Jul 17.
10

引用本文的文献

1
On Enthalpy-Entropy Compensation Characterizing Processes in Aqueous Solution.
Entropy (Basel). 2025 Jul 2;27(7):716. doi: 10.3390/e27070716.
2
How to Compute Density Fluctuations at the Nanoscale.
J Chem Theory Comput. 2025 Jan 14;21(1):38-45. doi: 10.1021/acs.jctc.4c01047. Epub 2024 Dec 27.
3
Molecular-Scale Liquid Density Fluctuations and Cavity Thermodynamics.
Entropy (Basel). 2024 Jul 24;26(8):620. doi: 10.3390/e26080620.
4
Excess Volumes from the Pressure Derivative of the Excess Chemical Potential: Testing Simple Models for Cavity Formation in Water.
ACS Omega. 2017 Oct 5;2(10):6424-6436. doi: 10.1021/acsomega.7b01157. eCollection 2017 Oct 31.
5
The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.
J Phys Chem B. 2018 May 3;122(17):4700-4707. doi: 10.1021/acs.jpcb.8b02666. Epub 2018 Apr 23.
6
Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly.
J Phys Chem B. 2017 Aug 31;121(34):8078-8084. doi: 10.1021/acs.jpcb.7b05469. Epub 2017 Aug 21.
7
Evidence from mixed hydrate nucleation for a funnel model of crystallization.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12041-12046. doi: 10.1073/pnas.1610437113. Epub 2016 Oct 6.
8
Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins.
J Phys Condens Matter. 2016 Mar 2;28(8):083003. doi: 10.1088/0953-8984/28/8/083003. Epub 2016 Feb 2.
10
Conditional solvation thermodynamics of isoleucine in model peptides and the limitations of the group-transfer model.
J Phys Chem B. 2014 Apr 17;118(15):4080-7. doi: 10.1021/jp500727u. Epub 2014 Apr 3.

本文引用的文献

1
Why gases dissolve in liquids.
Science. 1991 Mar 15;251(4999):1323-30. doi: 10.1126/science.251.4999.1323.
2
Some factors in the interpretation of protein denaturation.
Adv Protein Chem. 1959;14:1-63. doi: 10.1016/s0065-3233(08)60608-7.
3
Surface potential of the water liquid-vapor interface.
J Chem Phys. 1988 Mar 1;88(5):3281-5. doi: 10.1063/1.453923.
4
Cavities in molecular liquids and the theory of hydrophobic solubilities.
J Am Chem Soc. 1990;112(13):5066-74. doi: 10.1021/ja00169a011.
5
Molecular dynamics of the water liquid-vapor interface.
J Phys Chem. 1987;91(19):4873-8. doi: 10.1021/j100303a002.
7
The physical origin of the low solubility of nonpolar solutes in water.
Biopolymers. 1985 May;24(5):813-23. doi: 10.1002/bip.360240507.
8
Common features of protein unfolding and dissolution of hydrophobic compounds.
Science. 1990 Feb 2;247(4942):559-61. doi: 10.1126/science.2300815.
9
The meaning of hydrophobicity.
Science. 1990 Oct 12;250(4978):297-8. doi: 10.1126/science.2218535.
10
Dominant forces in protein folding.
Biochemistry. 1990 Aug 7;29(31):7133-55. doi: 10.1021/bi00483a001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验