Salisbury F B
Plant Science Department, Utah State University, Logan 84322, USA.
Physiologist. 1984;27(6 Suppl):S31-4.
Limitations to maximum plant yield are photosynthesis, respiration, and harvest index (edible/total biomass). Our best results with wheat equal 97.5 g total biomass m-2 day-1. Theoretical maximums for our continuous 900 micromoles photons m-2 s-1 = 175 g carbohydrate, so our life-cycle efficiency is about 56%. Mineral nutrition has posed problems, but these are now nearly solved. CO2 levels are about 80 micromoles m-3 (1700 ppm; ambient = 330 ppm). We have grown wheat plants successfully under low-pressure sodium lamps. The main factor promising increased yields is canopy development. About half the life cycle is required to develop a canopy that uses light efficiently. At that point, we achieve 89% of maximum theoretical growth, suggesting that most parameters are nearly optimal. The next important frontier concerns application of these techniques to the microgravity environment of a space craft. There are engineering problems connected with circulation of nutrient solutions, for example. Plant responses to microgravity could decrease or increase yields. Leaves become epinastic, grass nodes elongate, and roots grow out of their medium. We are proposing space experiments to study these problems.
植物最大产量的限制因素包括光合作用、呼吸作用和收获指数(可食用部分/总生物量)。我们种植小麦的最佳结果是总生物量达到97.5克/平方米·天。在连续光照强度为900微摩尔光子/平方米·秒的情况下,理论上的最大碳水化合物产量为175克,因此我们的生命周期效率约为56%。矿物质营养曾带来一些问题,但现在已基本解决。二氧化碳浓度约为80微摩尔/立方米(1700 ppm;环境浓度为330 ppm)。我们已在低压钠灯下成功种植了小麦植株。有望提高产量的主要因素是冠层发育。大约需要半个生命周期来发育一个能有效利用光照的冠层。到那时,我们能达到最大理论生长量的89%,这表明大多数参数已接近最优。下一个重要的前沿领域是将这些技术应用于航天器的微重力环境。例如,这涉及到营养液循环的工程问题。植物对微重力的反应可能会降低或提高产量。叶子会向下弯曲,草节会伸长,根会从培养基中长出来。我们正在提议进行太空实验来研究这些问题。