Suppr超能文献

受控环境中的植物生产力。

Plant productivity in controlled environments.

作者信息

Salisbury F B, Bugbee B

机构信息

Plant Science Department, Utah State University, Logan 84322-4820, USA.

出版信息

HortScience. 1988 Apr;23(2):293-9.

Abstract

To assess the cost and area/volume requirements of a farm in a space station or Lunar or Martian base, a few laboratories in the United States, the Soviet Union, France, and Japan are studying optimum controlled environments for the production of selected crops. Temperature, light, photoperiod, CO2, humidity, the root-zone environment, and cultivars are the primary factors being manipulated to increase yields and harvest index. Our best wheat yields on a time basis (24 g m-2 day-1 of edible biomass) are five times good field yields and twice the world record. Similar yields have been obtained in other laboratories with potatoes and lettuce; soybeans are also promising. These figures suggest that approximately 30 m2 under continuous production could support an astronaut with sufficient protein and about 2800 kcal day-1. Scientists under Iosif Gitelzon in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 months, producing 80% of their own food. Thirty square meters for crops were allotted to each of the two men taking part in the experiment. A functional controlled-environment life-support system (CELSS) will require the refined application of several disciplines: controlled-environment agriculture, food preparation, waste disposal, and control-systems technology, to list only the broadest categories. It has seemed intuitively evident that ways could be found to prepare food, regenerate plant nutrients from wastes, and even control and integrate several subsystems of a CELSS. But could sufficient food be produced in the limited areas and with the limited energy that might be available? Clearly, detailed studies of food production were necessary.

摘要

为评估在空间站、月球基地或火星基地建立农场的成本以及所需面积/体积,美国、苏联、法国和日本的一些实验室正在研究选定作物生产的最佳可控环境。温度、光照、光周期、二氧化碳、湿度、根区环境和品种是用于提高产量和收获指数的主要可控因素。我们按时间计算的最佳小麦产量(可食用生物量为24克/平方米·天)是田间良好产量的五倍,是世界纪录的两倍。其他实验室在土豆和生菜种植上也取得了类似产量;大豆种植前景也很乐观。这些数据表明,持续生产约30平方米的作物就能为一名宇航员提供足够的蛋白质和大约每天2800千卡的能量。西伯利亚克拉斯诺亚尔斯克的伊西夫·吉特尔松领导下的科学家们曾在一个封闭系统中生活了长达5个月,生产出了他们所需食物的80%。参与实验的两名人员每人都分配到了30平方米用于作物种植。一个实用的可控环境生命支持系统(CELSS)将需要精细应用多个学科:可控环境农业、食品制备、废物处理以及控制系统技术,这里仅列举最宽泛的类别。直观上似乎很明显,能够找到制备食物、从废物中再生植物养分以及控制和整合CELSS几个子系统的方法。但在有限的面积和可能有限的可用能源条件下,能生产出足够的食物吗?显然,有必要对食物生产进行详细研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验