Suppr超能文献

长期气候变化与碳的地球化学循环。

Long-term climate change and the geochemical cycle of carbon.

作者信息

Marshall H G, Walker J C, Kuhn W R

机构信息

Division of Information and Technology, University of Michigan, Ann Arbor, USA.

出版信息

J Geophys Res. 1988 Jan 20;93(D1):791-801. doi: 10.1029/jd093id01p00791.

Abstract

We study the interactions between the geochemical cycles of carbon and long-term changes in climate. Climate change is studied with a simple, zonally averaged energy balance climate model that includes the greenhouse effect of carbon dioxide explicitly. The geochemical model balances the rate of consumption of carbon dioxide in silicate weathering against its release by volcanic and metamorphic processes. The silicate weathering rate is expressed locally as a function of temperature, carbon dioxide partial pressure, and runoff. The global weathering rate is calculated by integrating these quantities over the land area as a function of latitude. Carbon dioxide feedback stabilizes the climate system against a reduction in solar luminosity and may contribute to the preservation of equable climate on the early Earth, when solar luminosity was low. The system responds to reduced land area by increasing carbon dioxide partial pressure and warming the globe. Our model makes it possible to study the response of the system to changing latitudinal distribution of the continents. A concentration of land area at high latitudes leads to high carbon dioxide partial pressures and high global average temperature because weathering of high-latitude continents is slow. Conversely, concentration of the continents at low latitudes yields a cold globe and ice at low latitudes, a situation that appears to be representative of the late Precambrian glacial episode. This model is stable against ice albedo catastrophe even when the ice line occurs at low latitudes. In this it differs from energy balance models that lack the coupling to the geochemical cycle of carbon.

摘要

我们研究碳的地球化学循环与气候长期变化之间的相互作用。使用一个简单的纬向平均能量平衡气候模型来研究气候变化,该模型明确包含了二氧化碳的温室效应。地球化学模型平衡了硅酸盐风化过程中二氧化碳的消耗速率与其通过火山和变质过程的释放速率。硅酸盐风化速率在局部地区表示为温度、二氧化碳分压和径流的函数。通过将这些量作为纬度的函数在陆地区域上进行积分来计算全球风化速率。二氧化碳反馈使气候系统对太阳光度的降低具有稳定性,并且可能有助于在早期地球太阳光度较低时维持稳定的气候。该系统通过增加二氧化碳分压和使地球变暖来应对陆地面积的减少。我们的模型使得研究系统对大陆纬度分布变化的响应成为可能。高纬度地区陆地面积的集中导致高二氧化碳分压和高全球平均温度,因为高纬度大陆的风化作用缓慢。相反,大陆集中在低纬度地区会导致地球寒冷且低纬度地区出现冰,这种情况似乎代表了前寒武纪晚期的冰川事件。即使冰线出现在低纬度地区,该模型也能抵御冰反照率灾难。在这方面,它与缺乏与碳地球化学循环耦合的能量平衡模型不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验