Greshake A
Institut fur Planetologie, Westfalische Wilhelms-Universitat Munster, Germany.
Geochim Cosmochim Acta. 1997 Jan;61(2):437-52. doi: 10.1016/s0016-7037(96)00332-8.
The mineralogical and chemical characteristics of the fine-grained matrix (< or = 3 micrometers) of the unique primitive carbonaceous chondrite Acfer 094 have been investigated in detail by scanning electron microscopy (SEM) and analytical transmission electron microscopy (ATEM). Generally, the fine-grained matrix represents a highly unequilibrated assemblage of an amorphous material, small forsteritic olivines (200-300 nm), low Ca-pyroxenes (300-400 nm), and Fe,Ni-sulfides (100-300 nm). The matrix is basically unaffected by secondary processes. Only minor amounts of serpentine and ferrihydrite, as products of hydrous alteration, are present. Texturally, the amorphous material acts as a groundmass to olivines, pyroxenes, and sulfides, mostly exhibiting rounded or elongated morphologies. Only very few clastic mineral grains have been found. The texture and chemical composition of the amorphous material are consistent with an origin by disequilibrium condensation in either the cooling solar nebula or a circumstellar environment. As such, the amorphous material may be considered as a possible precursor of matrix materials in other types of chondrites. The non-clastic matrix olivines (Fo98-99) and pyroxenes (En97-100) are suggested to have formed either by condensation in the solar nebula under highly oxidizing conditions or by recrystallization from the amorphous material. The formation of these grains by fragmentation of chondrule components is unlikely due to chemical and microstructural reasons. Rapid cooling caused the observed intergrowths of clino/orthoenstatite in the Mg-rich matrix pyroxenes. Although some similarities exist comparing the fine-grained matrix of Acfer 094 with the matrices of the unequilibrated CO3 chondrite ALHA77307 and the unique type 3 chondrite Kakangari, Acfer 094 remains unique. Since it contains the highest measured concentrations of circumstellar SiC and the second highest of diamond (highest is Orgueil), it seems reasonable to suggested that at least parts of the amorphous material in the fine-grained matrix may be of circumstellar origin.
利用扫描电子显微镜(SEM)和分析透射电子显微镜(ATEM),对独特的原始碳质球粒陨石Acfer 094细粒基质(≤3微米)的矿物学和化学特征进行了详细研究。总体而言,细粒基质代表了一种高度不平衡的组合,由无定形物质、小的镁橄榄石(200 - 300纳米)、低钙辉石(300 - 400纳米)和铁镍硫化物(100 - 300纳米)组成。该基质基本未受次生过程影响。仅存在少量作为水合蚀变产物的蛇纹石和水铁矿。从结构上看,无定形物质作为橄榄石、辉石和硫化物的基质,大多呈现圆形或拉长的形态。仅发现极少的碎屑矿物颗粒。无定形物质的结构和化学成分与在冷却的太阳星云或星周环境中通过不平衡凝聚形成的起源一致。因此,无定形物质可被视为其他类型球粒陨石中基质材料的一种可能前身。非碎屑基质橄榄石(Fo98 - 99)和辉石(En97 - 100)被认为要么是在高度氧化条件下于太阳星云中凝聚形成,要么是由无定形物质重结晶形成。由于化学和微观结构原因,这些颗粒由球粒组分破碎形成的可能性不大。快速冷却导致在富镁基质辉石中观察到斜方/正顽辉石的共生生长。尽管将Acfer 094的细粒基质与不平衡的CO3球粒陨石ALHA77307和独特的3型球粒陨石Kakangari的基质相比较存在一些相似之处,但Acfer 094仍然是独特的。由于它含有已测量的最高星周SiC浓度以及第二高的金刚石浓度(最高的是奥盖尔陨石),所以认为细粒基质中至少部分无定形物质可能起源于星周似乎是合理的。